MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltnr Structured version   Visualization version   GIF version

Theorem xrltnr 11991
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrltnr (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)

Proof of Theorem xrltnr
StepHypRef Expression
1 elxr 11988 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 ltnr 10170 . . 3 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
3 pnfnre 10119 . . . . . . . . . 10 +∞ ∉ ℝ
43neli 2928 . . . . . . . . 9 ¬ +∞ ∈ ℝ
54intnan 980 . . . . . . . 8 ¬ (+∞ ∈ ℝ ∧ +∞ ∈ ℝ)
65intnanr 981 . . . . . . 7 ¬ ((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞)
7 pnfnemnf 10132 . . . . . . . . 9 +∞ ≠ -∞
87neii 2825 . . . . . . . 8 ¬ +∞ = -∞
98intnanr 981 . . . . . . 7 ¬ (+∞ = -∞ ∧ +∞ = +∞)
106, 9pm3.2ni 917 . . . . . 6 ¬ (((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞))
114intnanr 981 . . . . . . 7 ¬ (+∞ ∈ ℝ ∧ +∞ = +∞)
124intnan 980 . . . . . . 7 ¬ (+∞ = -∞ ∧ +∞ ∈ ℝ)
1311, 12pm3.2ni 917 . . . . . 6 ¬ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ))
1410, 13pm3.2ni 917 . . . . 5 ¬ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ)))
15 pnfxr 10130 . . . . . 6 +∞ ∈ ℝ*
16 ltxr 11987 . . . . . 6 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (+∞ < +∞ ↔ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ)))))
1715, 15, 16mp2an 708 . . . . 5 (+∞ < +∞ ↔ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ))))
1814, 17mtbir 312 . . . 4 ¬ +∞ < +∞
19 breq12 4690 . . . . 5 ((𝐴 = +∞ ∧ 𝐴 = +∞) → (𝐴 < 𝐴 ↔ +∞ < +∞))
2019anidms 678 . . . 4 (𝐴 = +∞ → (𝐴 < 𝐴 ↔ +∞ < +∞))
2118, 20mtbiri 316 . . 3 (𝐴 = +∞ → ¬ 𝐴 < 𝐴)
22 mnfnre 10120 . . . . . . . . . 10 -∞ ∉ ℝ
2322neli 2928 . . . . . . . . 9 ¬ -∞ ∈ ℝ
2423intnan 980 . . . . . . . 8 ¬ (-∞ ∈ ℝ ∧ -∞ ∈ ℝ)
2524intnanr 981 . . . . . . 7 ¬ ((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞)
267nesymi 2880 . . . . . . . 8 ¬ -∞ = +∞
2726intnan 980 . . . . . . 7 ¬ (-∞ = -∞ ∧ -∞ = +∞)
2825, 27pm3.2ni 917 . . . . . 6 ¬ (((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞))
2923intnanr 981 . . . . . . 7 ¬ (-∞ ∈ ℝ ∧ -∞ = +∞)
3023intnan 980 . . . . . . 7 ¬ (-∞ = -∞ ∧ -∞ ∈ ℝ)
3129, 30pm3.2ni 917 . . . . . 6 ¬ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ))
3228, 31pm3.2ni 917 . . . . 5 ¬ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ)))
33 mnfxr 10134 . . . . . 6 -∞ ∈ ℝ*
34 ltxr 11987 . . . . . 6 ((-∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < -∞ ↔ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ)))))
3533, 33, 34mp2an 708 . . . . 5 (-∞ < -∞ ↔ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ))))
3632, 35mtbir 312 . . . 4 ¬ -∞ < -∞
37 breq12 4690 . . . . 5 ((𝐴 = -∞ ∧ 𝐴 = -∞) → (𝐴 < 𝐴 ↔ -∞ < -∞))
3837anidms 678 . . . 4 (𝐴 = -∞ → (𝐴 < 𝐴 ↔ -∞ < -∞))
3936, 38mtbiri 316 . . 3 (𝐴 = -∞ → ¬ 𝐴 < 𝐴)
402, 21, 393jaoi 1431 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ¬ 𝐴 < 𝐴)
411, 40sylbi 207 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3o 1053   = wceq 1523  wcel 2030   class class class wbr 4685  cr 9973   < cltrr 9978  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117
This theorem is referenced by:  xrltnsym  12008  xrlttri  12010  nltpnft  12033  ngtmnft  12035  xrsupsslem  12175  xrinfmsslem  12176  xrub  12180  lbioo  12244  ubioo  12245  topnfbey  27455  lbioc  40057  icoub  40070  iccpartnel  41699
  Copyright terms: Public domain W3C validator