![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to', for extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenlt 10141 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | con2bid 343 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
3 | 2 | ancoms 468 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-le 10118 |
This theorem is referenced by: xrletri 12022 qextltlem 12071 xralrple 12074 xltadd1 12124 xsubge0 12129 xposdif 12130 xltmul1 12160 ioo0 12238 ico0 12259 ioc0 12260 xrge0neqmnf 12314 snunioo 12336 snunioc 12338 difreicc 12342 hashbnd 13163 limsuplt 14254 pcadd 15640 pcadd2 15641 ramubcl 15769 ramlb 15770 leordtvallem1 21062 leordtvallem2 21063 leordtval2 21064 leordtval 21065 lecldbas 21071 blcld 22357 stdbdbl 22369 tmsxpsval2 22391 iocmnfcld 22619 xrsxmet 22659 metdsge 22699 bndth 22804 ovolgelb 23294 ovolunnul 23314 ioombl 23379 volsup2 23419 mbfmax 23461 ismbf3d 23466 itg2seq 23554 itg2monolem2 23563 itg2monolem3 23564 lhop2 23823 mdegleb 23869 deg1ge 23903 deg1add 23908 ig1pdvds 23981 plypf1 24013 radcnvlt1 24217 upgrfi 26031 xrdifh 29670 xrge00 29814 gsumesum 30249 itg2gt0cn 33595 asindmre 33625 dvasin 33626 radcnvrat 38830 supxrgelem 39866 infrpge 39880 xrlexaddrp 39881 xrltnled 39892 xrpnf 40029 gtnelioc 40030 ltnelicc 40037 gtnelicc 40040 snunioo1 40056 eliccnelico 40074 xrgtnelicc 40083 lptioo2 40181 stoweidlem34 40569 fourierdlem20 40662 fouriersw 40766 nltle2tri 41648 iccelpart 41694 |
Copyright terms: Public domain | W3C validator |