![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltletrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
xrltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
xrltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrltletr 12193 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1476 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 679 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 class class class wbr 4786 ℝ*cxr 10275 < clt 10276 ≤ cle 10277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-pre-lttri 10212 ax-pre-lttrn 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 |
This theorem is referenced by: xlt2add 12295 xadddi2 12332 supxrre 12362 infxrre 12371 ixxlb 12402 elicore 12431 elico2 12442 elicc2 12443 caucvgrlem 14611 isnzr2hash 19479 xrsdsreclblem 20007 xblss2ps 22426 xblss2 22427 tgioo 22819 xrge0tsms 22857 xrhmeo 22965 ovoliunlem1 23490 ovoliun 23493 ioombl1lem2 23547 vitalilem4 23599 itg2monolem2 23738 itg2gt0 23747 dvferm1lem 23967 dvferm2lem 23969 lhop1lem 23996 pserdvlem2 24402 abelthlem3 24407 logtayl 24627 xrge0tsmsd 30125 esum2d 30495 relowlssretop 33548 itg2gt0cn 33797 areacirclem5 33836 xrge0nemnfd 40064 supxrgere 40065 supxrgelem 40069 infrpge 40083 xrralrecnnge 40129 supxrunb3 40139 icoopn 40270 limsupre 40391 limsupre3lem 40482 xlimpnfv 40582 fourierdlem27 40868 fourierdlem87 40927 gsumge0cl 41105 sge0pr 41128 sge0ssre 41131 sge0xaddlem1 41167 meaiuninc3v 41218 pimiooltgt 41441 pimdecfgtioc 41445 preimageiingt 41450 |
Copyright terms: Public domain | W3C validator |