![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrltled | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal to', for extended reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrltled.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltled.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltled.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.altb | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltled.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrltled.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrltle 12196 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2140 class class class wbr 4805 ℝ*cxr 10286 < clt 10287 ≤ cle 10288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-pre-lttri 10223 ax-pre-lttrn 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 |
This theorem is referenced by: supxrgere 40066 suplesup 40072 infrpge 40084 xralrple2 40087 xrralrecnnle 40119 xrralrecnnge 40130 supxrunb3 40140 unb2ltle 40159 xrpnf 40233 snunioo2 40253 snunioo1 40260 iccdifprioo 40264 iccdificc 40288 lptioo1 40386 limsupub 40458 limsuppnflem 40464 limsupre3lem 40486 xlimmnfvlem1 40580 xlimpnfvlem1 40584 fourierdlem46 40891 fourierdlem48 40893 fourierdlem49 40894 fourierdlem74 40919 fourierdlem75 40920 fourierdlem113 40958 ioorrnopnxrlem 41048 salexct2 41079 sge0iunmptlemre 41154 sge0rpcpnf 41160 sge0xaddlem1 41172 meaiuninc3v 41223 ovnsubaddlem1 41309 hoidmv1le 41333 hoidmvlelem5 41338 ovolval4lem1 41388 ovolval5lem1 41391 pimltmnf2 41436 pimgtpnf2 41442 preimageiingt 41455 preimaleiinlt 41456 |
Copyright terms: Public domain | W3C validator |