![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltle | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
xrltle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 399 | . 2 ⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | |
2 | xrleloe 12015 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
3 | 1, 2 | syl5ibr 236 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 |
This theorem is referenced by: xrletri 12022 xrletr 12027 qextltlem 12071 xmulge0 12152 supxrunb1 12187 ico0 12259 ioc0 12260 ioossicc 12297 icossicc 12298 iocssicc 12299 ioossico 12300 snunioo 12336 snunico 12337 snunioc 12338 ioopnfsup 12703 icopnfsup 12704 hashnnn0genn0 13171 pcadd2 15641 leordtval2 21064 lecldbas 21071 xblss2ps 22253 xblss2 22254 blhalf 22257 blssps 22276 blss 22277 blcls 22358 stdbdxmet 22367 stdbdmopn 22370 metcnpi3 22398 blcvx 22648 tgqioo 22650 xrsmopn 22662 metdcnlem 22686 metnrmlem1a 22708 bndth 22804 ovolgelb 23294 icombl 23378 ioorcl2 23386 ioorf 23387 ioorinv2 23389 volivth 23421 itg2seq 23554 itg2monolem2 23563 itg2cnlem2 23574 dvferm1lem 23792 dvferm2lem 23794 dvferm 23796 dvivthlem1 23816 lhop2 23823 radcnvle 24219 tanord1 24328 dvloglem 24439 iocinif 29671 difioo 29672 esumpinfsum 30267 omssubadd 30490 elicc3 32436 tan2h 33531 heicant 33574 itg2addnclem 33591 ftc1anclem7 33621 ioounsn 38112 radcnvrat 38830 xrltled 39800 ioossioc 40031 ioossioobi 40061 fouriersw 40766 iccpartleu 41689 iccpartgel 41690 iccpartnel 41699 |
Copyright terms: Public domain | W3C validator |