![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrletrid | Structured version Visualization version GIF version |
Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrletrid.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrletrid.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrletrid.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrletrid.4 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
xrletrid | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrid.3 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrletrid.4 | . . 3 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
3 | 1, 2 | jca 555 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)) |
4 | xrletrid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | xrletrid.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | xrletri3 12149 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
7 | 4, 5, 6 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
8 | 3, 7 | mpbird 247 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 class class class wbr 4792 ℝ*cxr 10236 ≤ cle 10238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-pre-lttri 10173 ax-pre-lttrn 10174 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-po 5175 df-so 5176 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 |
This theorem is referenced by: infxrre 12330 ixxlb 12361 imasdsf1olem 22350 mbflimsup 23603 xrgepnfd 40014 supxrge 40021 infxrpnf 40141 eliccnelico 40228 liminfgelimsup 40486 liminfgelimsupuz 40492 liminflimsupclim 40511 ismbl4 40682 rrxsnicc 40992 sge0fsum 41076 sge0split 41098 sge0iunmptlemre 41104 sge0isum 41116 sge0xaddlem2 41123 sge0reuz 41136 meale0eq0 41167 carageniuncl 41212 caratheodorylem2 41216 caragenel2d 41221 omess0 41223 ovn0lem 41254 hoidmv1lelem2 41281 hoidmv1lelem3 41282 hoidmvlelem4 41287 ovnhoi 41292 ovolval2lem 41332 ovolval5lem3 41343 |
Copyright terms: Public domain | W3C validator |