MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrletr Structured version   Visualization version   GIF version

Theorem xrletr 12027
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem xrletr
StepHypRef Expression
1 xrleloe 12015 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1099 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
32adantr 480 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
4 xrlelttr 12025 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
5 xrltle 12020 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
653adant2 1100 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
74, 6syld 47 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴𝐶))
87expdimp 452 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 < 𝐶𝐴𝐶))
9 breq2 4689 . . . . . 6 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
109biimpcd 239 . . . . 5 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
1110adantl 481 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 = 𝐶𝐴𝐶))
128, 11jaod 394 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐵 < 𝐶𝐵 = 𝐶) → 𝐴𝐶))
133, 12sylbid 230 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵𝐶𝐴𝐶))
1413expimpd 628 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  *cxr 10111   < clt 10112  cle 10113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118
This theorem is referenced by:  xrletrd  12031  xrmaxle  12052  xrlemin  12053  xralrple  12074  xle2add  12127  icc0  12261  iccss  12279  icossico  12281  iccss2  12282  iccssico  12283  icoun  12334  snunico  12337  snunioc  12338  limsupgord  14247  limsupgre  14256  limsupbnd1  14257  limsupbnd2  14258  ramtlecl  15751  letsr  17274  leordtval2  21064  lecldbas  21071  imasdsf1olem  22225  stdbdxmet  22367  ovolmge0  23291  itg2le  23551  itg2seq  23554  plypf1  24013  pntleml  25345  ewlkle  26557  upgrewlkle2  26558  nmopge0  28898  nmfnge0  28914  xrstos  29807  xrge0omnd  29839  elicc3  32436  tan2h  33531  mblfinlem3  33578  mblfinlem4  33579  itg2addnclem  33591  monoordxrv  40025  liminfgord  40304
  Copyright terms: Public domain W3C validator