MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlelttr Structured version   Visualization version   GIF version

Theorem xrlelttr 12180
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrlelttr
StepHypRef Expression
1 xrleloe 12170 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
213adant3 1127 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
3 xrlttr 12166 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expd 451 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
5 breq1 4807 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐶𝐵 < 𝐶))
65biimprd 238 . . . . 5 (𝐴 = 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 = 𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
84, 7jaod 394 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐴 = 𝐵) → (𝐵 < 𝐶𝐴 < 𝐶)))
92, 8sylbid 230 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 → (𝐵 < 𝐶𝐴 < 𝐶)))
109impd 446 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  *cxr 10265   < clt 10266  cle 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-pre-lttri 10202  ax-pre-lttrn 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272
This theorem is referenced by:  xrletr  12182  xrlelttrd  12184  xrre  12193  xrre2  12194  xrmaxlt  12205  supxrun  12339  iooss1  12403  ico0  12414  iccssioo  12435  iccssico  12438  iocssioo  12456  ioossioo  12458  snunioo  12491  leordtval2  21218  lecldbas  21225  pnfnei  21226  bldisj  22404  xbln0  22420  prdsbl  22497  blsscls2  22510  metcnpi3  22552  iocmnfcld  22773  iscau3  23276  ismbf3d  23620  itgsubst  24011  mdegaddle  24033  mdegmullem  24037  ply1divmo  24094  psercnlem2  24377  ftc1anclem6  33803  ftc1anc  33806  asindmre  33808  snunioo1  40241
  Copyright terms: Public domain W3C validator