![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrleid | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrleid | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . 4 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 405 | . . 3 ⊢ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴) |
3 | xrleloe 12015 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 248 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐴 ≤ 𝐴) |
5 | 4 | anidms 678 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 |
This theorem is referenced by: xrmax1 12044 xrmax2 12045 xrmin1 12046 xrmin2 12047 xleadd1a 12121 xlemul1a 12156 supxrre 12195 infxrre 12204 iooid 12241 iccid 12258 icc0 12261 ubioc1 12265 lbico1 12266 lbicc2 12326 ubicc2 12327 snunioo 12336 snunico 12337 snunioc 12338 limsupgord 14247 limsupgre 14256 limsupbnd1 14257 limsupbnd2 14258 pcdvdstr 15627 pcadd 15640 ledm 17271 lern 17272 letsr 17274 imasdsf1olem 22225 blssps 22276 blss 22277 blcld 22357 nmolb 22568 xrsxmet 22659 metds0 22700 metdstri 22701 metdseq0 22704 ismbfd 23452 itg2eqa 23557 mdeglt 23870 deg1lt 23902 xraddge02 29649 eliccelico 29667 elicoelioo 29668 difioo 29672 xrstos 29807 xrge0omnd 29839 esumpmono 30269 signsply0 30756 elicc3 32436 ioounsn 38112 iocinico 38114 xreqle 39847 xadd0ge 39849 xrleidd 39923 infxrpnf 39987 snunioo2 40049 snunioo1 40056 limcresiooub 40192 ismbl4 40528 sge0prle 40936 iunhoiioo 41211 iccpartleu 41689 iccpartgel 41690 |
Copyright terms: Public domain | W3C validator |