![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrinf0 | Structured version Visualization version GIF version |
Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
xrinf0 | ⊢ inf(∅, ℝ*, < ) = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12187 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → < Or ℝ*) |
3 | pnfxr 10304 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → +∞ ∈ ℝ*) |
5 | noel 4062 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
6 | 5 | pm2.21i 116 | . . . 4 ⊢ (𝑦 ∈ ∅ → ¬ 𝑦 < +∞) |
7 | 6 | adantl 473 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞) |
8 | pnfnlt 12175 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
9 | 8 | pm2.21d 118 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
10 | 9 | imp 444 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
11 | 10 | adantl 473 | . . 3 ⊢ ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
12 | 2, 4, 7, 11 | eqinfd 8558 | . 2 ⊢ (⊤ → inf(∅, ℝ*, < ) = +∞) |
13 | 12 | trud 1642 | 1 ⊢ inf(∅, ℝ*, < ) = +∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1632 ⊤wtru 1633 ∈ wcel 2139 ∃wrex 3051 ∅c0 4058 class class class wbr 4804 Or wor 5186 infcinf 8514 +∞cpnf 10283 ℝ*cxr 10285 < clt 10286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-pre-lttri 10222 ax-pre-lttrn 10223 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 |
This theorem is referenced by: ramcl2lem 15935 infleinf 40104 infxrpnf 40190 supxrltinfxr 40193 supminfxr 40210 |
Copyright terms: Public domain | W3C validator |