![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tsmsbi | Structured version Visualization version GIF version |
Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017.) |
Ref | Expression |
---|---|
xrge0tsmseq.g | ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) |
xrge0tsmseq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
xrge0tsmseq.f | ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) |
Ref | Expression |
---|---|
xrge0tsmsbi | ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0tsmseq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | xrge0tsmseq.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) | |
3 | xrge0tsmseq.g | . . . . . 6 ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) | |
4 | 3 | xrge0tsms2 22831 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1𝑜) |
5 | 1, 2, 4 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ≈ 1𝑜) |
6 | en1b 8181 | . . . 4 ⊢ ((𝐺 tsums 𝐹) ≈ 1𝑜 ↔ (𝐺 tsums 𝐹) = {∪ (𝐺 tsums 𝐹)}) | |
7 | 5, 6 | sylib 208 | . . 3 ⊢ (𝜑 → (𝐺 tsums 𝐹) = {∪ (𝐺 tsums 𝐹)}) |
8 | 7 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ {∪ (𝐺 tsums 𝐹)})) |
9 | ovex 6833 | . . . . . . 7 ⊢ (𝐺 tsums 𝐹) ∈ V | |
10 | 9 | uniex 7110 | . . . . . 6 ⊢ ∪ (𝐺 tsums 𝐹) ∈ V |
11 | eleq1 2819 | . . . . . 6 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → (𝐶 ∈ V ↔ ∪ (𝐺 tsums 𝐹) ∈ V)) | |
12 | 10, 11 | mpbiri 248 | . . . . 5 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → 𝐶 ∈ V) |
13 | elsng 4327 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
15 | 14 | ibir 257 | . . 3 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) → 𝐶 ∈ {∪ (𝐺 tsums 𝐹)}) |
16 | elsni 4330 | . . 3 ⊢ (𝐶 ∈ {∪ (𝐺 tsums 𝐹)} → 𝐶 = ∪ (𝐺 tsums 𝐹)) | |
17 | 15, 16 | impbii 199 | . 2 ⊢ (𝐶 = ∪ (𝐺 tsums 𝐹) ↔ 𝐶 ∈ {∪ (𝐺 tsums 𝐹)}) |
18 | 8, 17 | syl6bbr 278 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1624 ∈ wcel 2131 Vcvv 3332 {csn 4313 ∪ cuni 4580 class class class wbr 4796 ⟶wf 6037 (class class class)co 6805 1𝑜c1o 7714 ≈ cen 8110 0cc0 10120 +∞cpnf 10255 [,]cicc 12363 ↾s cress 16052 ℝ*𝑠cxrs 16354 tsums ctsu 22122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-of 7054 df-om 7223 df-1st 7325 df-2nd 7326 df-supp 7456 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8433 df-fi 8474 df-sup 8505 df-inf 8506 df-oi 8572 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-q 11974 df-xadd 12132 df-ioo 12364 df-ioc 12365 df-ico 12366 df-icc 12367 df-fz 12512 df-fzo 12652 df-seq 12988 df-hash 13304 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-tset 16154 df-ple 16155 df-ds 16158 df-rest 16277 df-topn 16278 df-0g 16296 df-gsum 16297 df-topgen 16298 df-ordt 16355 df-xrs 16356 df-mre 16440 df-mrc 16441 df-acs 16443 df-ps 17393 df-tsr 17394 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-submnd 17529 df-cntz 17942 df-cmn 18387 df-fbas 19937 df-fg 19938 df-top 20893 df-topon 20910 df-topsp 20931 df-bases 20944 df-ntr 21018 df-nei 21096 df-cn 21225 df-haus 21313 df-fil 21843 df-fm 21935 df-flim 21936 df-flf 21937 df-tsms 22123 |
This theorem is referenced by: esumcl 30393 |
Copyright terms: Public domain | W3C validator |