MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0tsms Structured version   Visualization version   GIF version

Theorem xrge0tsms 22684
Description: Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Proof shortened by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
xrge0tsms.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0tsms.a (𝜑𝐴𝑉)
xrge0tsms.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0tsms.s 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < )
Assertion
Ref Expression
xrge0tsms (𝜑 → (𝐺 tsums 𝐹) = {𝑆})
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝜑,𝑠   𝐺,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑉(𝑠)

Proof of Theorem xrge0tsms
Dummy variables 𝑟 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0tsms.s . . . . 5 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < )
2 iccssxr 12294 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3 xrge0tsms.g . . . . . . . . . . . 12 𝐺 = (ℝ*𝑠s (0[,]+∞))
4 xrsbas 19810 . . . . . . . . . . . 12 * = (Base‘ℝ*𝑠)
53, 4ressbas2 15978 . . . . . . . . . . 11 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
62, 5ax-mp 5 . . . . . . . . . 10 (0[,]+∞) = (Base‘𝐺)
7 eqid 2651 . . . . . . . . . . . 12 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
87xrge0subm 19835 . . . . . . . . . . 11 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
9 xrex 11867 . . . . . . . . . . . . . . 15 * ∈ V
10 difexg 4841 . . . . . . . . . . . . . . 15 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
119, 10ax-mp 5 . . . . . . . . . . . . . 14 (ℝ* ∖ {-∞}) ∈ V
12 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
13 ge0nemnf 12042 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
1412, 13jca 553 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
15 elxrge0 12319 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
16 eldifsn 4350 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
1714, 15, 163imtr4i 281 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
1817ssriv 3640 . . . . . . . . . . . . . 14 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
19 ressabs 15986 . . . . . . . . . . . . . 14 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
2011, 18, 19mp2an 708 . . . . . . . . . . . . 13 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
213, 20eqtr4i 2676 . . . . . . . . . . . 12 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
227xrs10 19833 . . . . . . . . . . . 12 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
2321, 22subm0 17403 . . . . . . . . . . 11 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
248, 23ax-mp 5 . . . . . . . . . 10 0 = (0g𝐺)
25 xrge0cmn 19836 . . . . . . . . . . . 12 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
263, 25eqeltri 2726 . . . . . . . . . . 11 𝐺 ∈ CMnd
2726a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
28 elfpw 8309 . . . . . . . . . . . 12 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
2928simprbi 479 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
3029adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
31 xrge0tsms.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶(0[,]+∞))
3228simplbi 475 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
33 fssres 6108 . . . . . . . . . . 11 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
3431, 32, 33syl2an 493 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
35 c0ex 10072 . . . . . . . . . . . 12 0 ∈ V
3635a1i 11 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
3734, 30, 36fdmfifsupp 8326 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp 0)
386, 24, 27, 30, 34, 37gsumcl 18362 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
392, 38sseldi 3634 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
40 eqid 2651 . . . . . . . 8 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
4139, 40fmptd 6425 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
42 frn 6091 . . . . . . 7 ((𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ* → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
4341, 42syl 17 . . . . . 6 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
44 supxrcl 12183 . . . . . 6 (ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* → sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ∈ ℝ*)
4543, 44syl 17 . . . . 5 (𝜑 → sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ∈ ℝ*)
461, 45syl5eqel 2734 . . . 4 (𝜑𝑆 ∈ ℝ*)
47 0ss 4005 . . . . . . . 8 ∅ ⊆ 𝐴
48 0fin 8229 . . . . . . . 8 ∅ ∈ Fin
49 elfpw 8309 . . . . . . . 8 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
5047, 48, 49mpbir2an 975 . . . . . . 7 ∅ ∈ (𝒫 𝐴 ∩ Fin)
51 0cn 10070 . . . . . . 7 0 ∈ ℂ
52 reseq2 5423 . . . . . . . . . . 11 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
53 res0 5432 . . . . . . . . . . 11 (𝐹 ↾ ∅) = ∅
5452, 53syl6eq 2701 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = ∅)
5554oveq2d 6706 . . . . . . . . 9 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
5624gsum0 17325 . . . . . . . . 9 (𝐺 Σg ∅) = 0
5755, 56syl6eq 2701 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5840, 57elrnmpt1s 5405 . . . . . . 7 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5950, 51, 58mp2an 708 . . . . . 6 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
60 supxrub 12192 . . . . . 6 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* ∧ 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))) → 0 ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
6143, 59, 60sylancl 695 . . . . 5 (𝜑 → 0 ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
6261, 1syl6breqr 4727 . . . 4 (𝜑 → 0 ≤ 𝑆)
63 elxrge0 12319 . . . 4 (𝑆 ∈ (0[,]+∞) ↔ (𝑆 ∈ ℝ* ∧ 0 ≤ 𝑆))
6446, 62, 63sylanbrc 699 . . 3 (𝜑𝑆 ∈ (0[,]+∞))
65 letop 21058 . . . . . 6 (ordTop‘ ≤ ) ∈ Top
66 ovex 6718 . . . . . 6 (0[,]+∞) ∈ V
67 elrest 16135 . . . . . 6 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V) → (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↔ ∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞))))
6865, 66, 67mp2an 708 . . . . 5 (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↔ ∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞)))
69 inss1 3866 . . . . . . . . 9 (𝑣 ∩ (0[,]+∞)) ⊆ 𝑣
7069sseli 3632 . . . . . . . 8 (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → 𝑆𝑣)
71 simplrl 817 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑣 ∈ (ordTop‘ ≤ ))
72 reex 10065 . . . . . . . . . . . . . . 15 ℝ ∈ V
73 elrestr 16136 . . . . . . . . . . . . . . 15 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑣 ∈ (ordTop‘ ≤ )) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
7465, 72, 73mp3an12 1454 . . . . . . . . . . . . . 14 (𝑣 ∈ (ordTop‘ ≤ ) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
7571, 74syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
76 eqid 2651 . . . . . . . . . . . . . 14 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
7776xrtgioo 22656 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
7875, 77syl6eleqr 2741 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑣 ∩ ℝ) ∈ (topGen‘ran (,)))
79 simplrr 818 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆𝑣)
80 simpr 476 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
8179, 80elind 3831 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ (𝑣 ∩ ℝ))
82 tg2 20817 . . . . . . . . . . . 12 (((𝑣 ∩ ℝ) ∈ (topGen‘ran (,)) ∧ 𝑆 ∈ (𝑣 ∩ ℝ)) → ∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)))
8378, 81, 82syl2anc 694 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → ∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)))
84 ioof 12309 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
85 ffn 6083 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
86 ovelrn 6852 . . . . . . . . . . . . . 14 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤)))
8784, 85, 86mp2b 10 . . . . . . . . . . . . 13 (𝑢 ∈ ran (,) ↔ ∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤))
88 simprrr 822 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))
8988adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))
90 inss1 3866 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∩ ℝ) ⊆ 𝑣
9189, 90syl6ss 3648 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝑟(,)𝑤) ⊆ 𝑣)
9226a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐺 ∈ CMnd)
93 simprrl 821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
94 elfpw 8309 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
9594simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
9693, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦 ∈ Fin)
97 simp-4l 823 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝜑)
9897, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐹:𝐴⟶(0[,]+∞))
9994simplbi 475 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
10093, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦𝐴)
10198, 100fssresd 6109 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑦):𝑦⟶(0[,]+∞))
10235a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 0 ∈ V)
103101, 96, 102fdmfifsupp 8326 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑦) finSupp 0)
1046, 24, 92, 96, 101, 103gsumcl 18362 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (0[,]+∞))
1052, 104sseldi 3634 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ ℝ*)
106 simprll 819 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 ∈ ℝ*)
107106adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 ∈ ℝ*)
108 simprrr 822 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧𝑦)
109 ssfi 8221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ Fin ∧ 𝑧𝑦) → 𝑧 ∈ Fin)
11096, 108, 109syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧 ∈ Fin)
111108, 100sstrd 3646 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧𝐴)
11298, 111fssresd 6109 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑧):𝑧⟶(0[,]+∞))
113112, 110, 102fdmfifsupp 8326 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑧) finSupp 0)
1146, 24, 92, 110, 112, 113gsumcl 18362 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ∈ (0[,]+∞))
1152, 114sseldi 3634 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ∈ ℝ*)
116 simprlr 820 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 < (𝐺 Σg (𝐹𝑧)))
117 xrge0tsms.a . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐴𝑉)
11897, 117syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐴𝑉)
1193, 118, 98, 93, 108xrge0gsumle 22683 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ≤ (𝐺 Σg (𝐹𝑦)))
120107, 115, 105, 116, 119xrltletrd 12030 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 < (𝐺 Σg (𝐹𝑦)))
12197, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 ∈ ℝ*)
122 simprlr 820 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑤 ∈ ℝ*)
123122adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑤 ∈ ℝ*)
12497, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
125 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 Σg (𝐹𝑦)) ∈ V
126 reseq2 5423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 𝑦 → (𝐹𝑠) = (𝐹𝑦))
127126oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑦 → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg (𝐹𝑦)))
12840, 127elrnmpt1s 5405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐺 Σg (𝐹𝑦)) ∈ V) → (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
12993, 125, 128sylancl 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
130 supxrub 12192 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* ∧ (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))) → (𝐺 Σg (𝐹𝑦)) ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
131124, 129, 130syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
132131, 1syl6breqr 4727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ≤ 𝑆)
133 simprrl 821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 ∈ (𝑟(,)𝑤))
134 eliooord 12271 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ (𝑟(,)𝑤) → (𝑟 < 𝑆𝑆 < 𝑤))
135133, 134syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟 < 𝑆𝑆 < 𝑤))
136135simprd 478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 < 𝑤)
137136adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 < 𝑤)
138105, 121, 123, 132, 137xrlelttrd 12029 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) < 𝑤)
139 elioo1 12253 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) < 𝑤)))
140107, 123, 139syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) < 𝑤)))
141105, 120, 138, 140mpbir3and 1264 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤))
14291, 141sseldd 3637 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ 𝑣)
143142, 104elind 3831 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
144143anassrs 681 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
145144expr 642 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
146145ralrimiva 2995 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
147135simpld 474 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 < 𝑆)
148147, 1syl6breq 4726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
14943ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
150 supxrlub 12193 . . . . . . . . . . . . . . . . . . . 20 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*𝑟 ∈ ℝ*) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
151149, 106, 150syl2anc 694 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
152148, 151mpbid 222 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤)
153 ovex 6718 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Σg (𝐹𝑧)) ∈ V
154153rgenw 2953 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Σg (𝐹𝑧)) ∈ V
155 reseq2 5423 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
156155oveq2d 6706 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑧 → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg (𝐹𝑧)))
157156cbvmptv 4783 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))
158 breq2 4689 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐺 Σg (𝐹𝑧)) → (𝑟 < 𝑤𝑟 < (𝐺 Σg (𝐹𝑧))))
159157, 158rexrnmpt 6409 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Σg (𝐹𝑧)) ∈ V → (∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧))))
160154, 159ax-mp 5 . . . . . . . . . . . . . . . . . 18 (∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
161152, 160sylib 208 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
162146, 161reximddv 3047 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
163162expr 642 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (𝑟 ∈ ℝ*𝑤 ∈ ℝ*)) → ((𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
164 eleq2 2719 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑟(,)𝑤) → (𝑆𝑢𝑆 ∈ (𝑟(,)𝑤)))
165 sseq1 3659 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑟(,)𝑤) → (𝑢 ⊆ (𝑣 ∩ ℝ) ↔ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))
166164, 165anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) ↔ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))))
167166imbi1d 330 . . . . . . . . . . . . . . 15 (𝑢 = (𝑟(,)𝑤) → (((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))) ↔ ((𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
168163, 167syl5ibrcom 237 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (𝑟 ∈ ℝ*𝑤 ∈ ℝ*)) → (𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
169168rexlimdvva 3067 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
17087, 169syl5bi 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑢 ∈ ran (,) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
171170rexlimdv 3059 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
17283, 171mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
173 simplrl 817 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑣 ∈ (ordTop‘ ≤ ))
174 simpr 476 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑆 = +∞)
175 simplrr 818 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑆𝑣)
176174, 175eqeltrrd 2731 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → +∞ ∈ 𝑣)
177 pnfnei 21072 . . . . . . . . . . . 12 ((𝑣 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑣) → ∃𝑟 ∈ ℝ (𝑟(,]+∞) ⊆ 𝑣)
178173, 176, 177syl2anc 694 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → ∃𝑟 ∈ ℝ (𝑟(,]+∞) ⊆ 𝑣)
179 simprr 811 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → (𝑟(,]+∞) ⊆ 𝑣)
180179ad2antrr 762 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝑟(,]+∞) ⊆ 𝑣)
18126a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐺 ∈ CMnd)
18295ad2antrl 764 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦 ∈ Fin)
183 simp-5l 825 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝜑)
184183, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐹:𝐴⟶(0[,]+∞))
18599ad2antrl 764 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦𝐴)
186184, 185fssresd 6109 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑦):𝑦⟶(0[,]+∞))
18735a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 0 ∈ V)
188186, 182, 187fdmfifsupp 8326 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑦) finSupp 0)
1896, 24, 181, 182, 186, 188gsumcl 18362 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (0[,]+∞))
1902, 189sseldi 3634 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ ℝ*)
191 rexr 10123 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
192191ad2antrl 764 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 ∈ ℝ*)
193192ad2antrr 762 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 ∈ ℝ*)
194 simprr 811 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧𝑦)
195182, 194, 109syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧 ∈ Fin)
196194, 185sstrd 3646 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧𝐴)
197184, 196fssresd 6109 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑧):𝑧⟶(0[,]+∞))
198197, 195, 187fdmfifsupp 8326 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑧) finSupp 0)
1996, 24, 181, 195, 197, 198gsumcl 18362 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ∈ (0[,]+∞))
2002, 199sseldi 3634 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ∈ ℝ*)
201 simplrr 818 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 < (𝐺 Σg (𝐹𝑧)))
202183, 117syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐴𝑉)
203 simprl 809 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
2043, 202, 184, 203, 194xrge0gsumle 22683 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ≤ (𝐺 Σg (𝐹𝑦)))
205193, 200, 190, 201, 204xrltletrd 12030 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 < (𝐺 Σg (𝐹𝑦)))
206 pnfge 12002 . . . . . . . . . . . . . . . . . 18 ((𝐺 Σg (𝐹𝑦)) ∈ ℝ* → (𝐺 Σg (𝐹𝑦)) ≤ +∞)
207190, 206syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ≤ +∞)
208 pnfxr 10130 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
209 elioc1 12255 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) ≤ +∞)))
210193, 208, 209sylancl 695 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) ≤ +∞)))
211190, 205, 207, 210mpbir3and 1264 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞))
212180, 211sseldd 3637 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ 𝑣)
213212, 189elind 3831 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
214213expr 642 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
215214ralrimiva 2995 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
216 ltpnf 11992 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ → 𝑟 < +∞)
217216ad2antrl 764 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < +∞)
218 simplr 807 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑆 = +∞)
219217, 218breqtrrd 4713 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < 𝑆)
220219, 1syl6breq 4726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
22143ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
222221, 192, 150syl2anc 694 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
223220, 222mpbid 222 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤)
224223, 160sylib 208 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
225215, 224reximddv 3047 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
226178, 225rexlimddv 3064 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
227 ge0nemnf 12042 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ 0 ≤ 𝑆) → 𝑆 ≠ -∞)
22846, 62, 227syl2anc 694 . . . . . . . . . . . . 13 (𝜑𝑆 ≠ -∞)
22946, 228jca 553 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ ℝ*𝑆 ≠ -∞))
230229adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → (𝑆 ∈ ℝ*𝑆 ≠ -∞))
231 xrnemnf 11989 . . . . . . . . . . 11 ((𝑆 ∈ ℝ*𝑆 ≠ -∞) ↔ (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
232230, 231sylib 208 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
233172, 226, 232mpjaodan 844 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
234233expr 642 . . . . . . . 8 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑆𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
23570, 234syl5 34 . . . . . . 7 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
236 eleq2 2719 . . . . . . . 8 (𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢𝑆 ∈ (𝑣 ∩ (0[,]+∞))))
237 eleq2 2719 . . . . . . . . . 10 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
238237imbi2d 329 . . . . . . . . 9 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
239238rexralbidv 3087 . . . . . . . 8 (𝑢 = (𝑣 ∩ (0[,]+∞)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
240236, 239imbi12d 333 . . . . . . 7 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)) ↔ (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
241235, 240syl5ibrcom 237 . . . . . 6 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
242241rexlimdva 3060 . . . . 5 (𝜑 → (∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
24368, 242syl5bi 232 . . . 4 (𝜑 → (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
244243ralrimiv 2994 . . 3 (𝜑 → ∀𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))(𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
245 xrstset 19813 . . . . . . 7 (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠)
2463, 245resstset 16093 . . . . . 6 ((0[,]+∞) ∈ V → (ordTop‘ ≤ ) = (TopSet‘𝐺))
24766, 246ax-mp 5 . . . . 5 (ordTop‘ ≤ ) = (TopSet‘𝐺)
2486, 247topnval 16142 . . . 4 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘𝐺)
249 eqid 2651 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
25026a1i 11 . . . 4 (𝜑𝐺 ∈ CMnd)
251 xrstps 21061 . . . . . . 7 *𝑠 ∈ TopSp
252 resstps 21039 . . . . . . 7 ((ℝ*𝑠 ∈ TopSp ∧ (0[,]+∞) ∈ V) → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
253251, 66, 252mp2an 708 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
2543, 253eqeltri 2726 . . . . 5 𝐺 ∈ TopSp
255254a1i 11 . . . 4 (𝜑𝐺 ∈ TopSp)
2566, 248, 249, 250, 255, 117, 31eltsms 21983 . . 3 (𝜑 → (𝑆 ∈ (𝐺 tsums 𝐹) ↔ (𝑆 ∈ (0[,]+∞) ∧ ∀𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))(𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
25764, 244, 256mpbir2and 977 . 2 (𝜑𝑆 ∈ (𝐺 tsums 𝐹))
258 letsr 17274 . . . . 5 ≤ ∈ TosetRel
259 ordthaus 21236 . . . . 5 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ Haus)
260258, 259mp1i 13 . . . 4 (𝜑 → (ordTop‘ ≤ ) ∈ Haus)
261 resthaus 21220 . . . 4 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
262260, 66, 261sylancl 695 . . 3 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2636, 250, 255, 117, 31, 248, 262haustsms2 21987 . 2 (𝜑 → (𝑆 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑆}))
264257, 263mpd 15 1 (𝜑 → (𝐺 tsums 𝐹) = {𝑆})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  ran crn 5144  cres 5145   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  cc 9972  cr 9973  0cc0 9974  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  (,)cioo 12213  (,]cioc 12214  [,]cicc 12216  Basecbs 15904  s cress 15905  TopSetcts 15994  t crest 16128  topGenctg 16145  0gc0g 16147   Σg cgsu 16148  ordTopcordt 16206  *𝑠cxrs 16207   TosetRel ctsr 17246  SubMndcsubmnd 17381  CMndccmn 18239  Topctop 20746  TopSpctps 20784  Hauscha 21160   tsums ctsu 21976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-xadd 11985  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-tset 16007  df-ple 16008  df-ds 16011  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-ordt 16208  df-xrs 16209  df-mre 16293  df-mrc 16294  df-acs 16296  df-ps 17247  df-tsr 17248  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-cntz 17796  df-cmn 18241  df-fbas 19791  df-fg 19792  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-ntr 20872  df-nei 20950  df-cn 21079  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tsms 21977
This theorem is referenced by:  xrge0tsms2  22685  sge0tsms  40915
  Copyright terms: Public domain W3C validator