Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0pluscn Structured version   Visualization version   GIF version

Theorem xrge0pluscn 30114
 Description: The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0pluscn.1 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
Assertion
Ref Expression
xrge0pluscn + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   + (𝑥)   𝐽(𝑥)

Proof of Theorem xrge0pluscn
Dummy variables 𝑦 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 xrge0iifhmeo.k . . 3 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2xrge0iifhmeo 30110 . 2 𝐹 ∈ (IIHomeo𝐽)
4 unitsscn 30070 . . . . 5 (0[,]1) ⊆ ℂ
5 xpss12 5158 . . . . 5 (((0[,]1) ⊆ ℂ ∧ (0[,]1) ⊆ ℂ) → ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
64, 4, 5mp2an 708 . . . 4 ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)
7 ax-mulf 10054 . . . . 5 · :(ℂ × ℂ)⟶ℂ
8 ffn 6083 . . . . 5 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
9 fnssresb 6041 . . . . 5 ( · Fn (ℂ × ℂ) → (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)))
107, 8, 9mp2b 10 . . . 4 (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
116, 10mpbir 221 . . 3 ( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1))
12 ovres 6842 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) = (𝑢 · 𝑣))
13 iimulcl 22783 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) ∈ (0[,]1))
1412, 13eqeltrd 2730 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1))
1514rgen2a 3006 . . 3 𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)
16 ffnov 6806 . . 3 (( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1) ↔ (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ∧ ∀𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)))
1711, 15, 16mpbir2an 975 . 2 ( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1)
18 iccssxr 12294 . . . . . 6 (0[,]+∞) ⊆ ℝ*
19 xpss12 5158 . . . . . 6 (((0[,]+∞) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2018, 18, 19mp2an 708 . . . . 5 ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)
21 xaddf 12093 . . . . . 6 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
22 ffn 6083 . . . . . 6 ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*))
23 fnssresb 6041 . . . . . 6 ( +𝑒 Fn (ℝ* × ℝ*) → (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)))
2421, 22, 23mp2b 10 . . . . 5 (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2520, 24mpbir 221 . . . 4 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞))
26 xrge0pluscn.1 . . . . 5 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
2726fneq1i 6023 . . . 4 ( + Fn ((0[,]+∞) × (0[,]+∞)) ↔ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)))
2825, 27mpbir 221 . . 3 + Fn ((0[,]+∞) × (0[,]+∞))
2926oveqi 6703 . . . . 5 (𝑎 + 𝑏) = (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏)
30 ovres 6842 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) = (𝑎 +𝑒 𝑏))
31 ge0xaddcl 12324 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 +𝑒 𝑏) ∈ (0[,]+∞))
3230, 31eqeltrd 2730 . . . . 5 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) ∈ (0[,]+∞))
3329, 32syl5eqel 2734 . . . 4 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 + 𝑏) ∈ (0[,]+∞))
3433rgen2a 3006 . . 3 𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)
35 ffnov 6806 . . 3 ( + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞) ↔ ( + Fn ((0[,]+∞) × (0[,]+∞)) ∧ ∀𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)))
3628, 34, 35mpbir2an 975 . 2 + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞)
37 iitopon 22729 . 2 II ∈ (TopOn‘(0[,]1))
38 letopon 21057 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
39 resttopon 21013 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
4038, 18, 39mp2an 708 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
412, 40eqeltri 2726 . 2 𝐽 ∈ (TopOn‘(0[,]+∞))
4226oveqi 6703 . . . 4 ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣))
431xrge0iifcnv 30107 . . . . . . . 8 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
4443simpli 473 . . . . . . 7 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
45 f1of 6175 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
4644, 45ax-mp 5 . . . . . 6 𝐹:(0[,]1)⟶(0[,]+∞)
4746ffvelrni 6398 . . . . 5 (𝑢 ∈ (0[,]1) → (𝐹𝑢) ∈ (0[,]+∞))
4846ffvelrni 6398 . . . . 5 (𝑣 ∈ (0[,]1) → (𝐹𝑣) ∈ (0[,]+∞))
49 ovres 6842 . . . . 5 (((𝐹𝑢) ∈ (0[,]+∞) ∧ (𝐹𝑣) ∈ (0[,]+∞)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5047, 48, 49syl2an 493 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5142, 50syl5eq 2697 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
521, 2xrge0iifhom 30111 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5312eqcomd 2657 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) = (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣))
5453fveq2d 6233 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)))
5551, 52, 543eqtr2rd 2692 . 2 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)) = ((𝐹𝑢) + (𝐹𝑣)))
56 eqid 2651 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
5756iistmd 30076 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
58 cnfldex 19797 . . . . . 6 fld ∈ V
59 ovex 6718 . . . . . 6 (0[,]1) ∈ V
60 eqid 2651 . . . . . . 7 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
61 eqid 2651 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
6260, 61mgpress 18546 . . . . . 6 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
6358, 59, 62mp2an 708 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
6460dfii4 22734 . . . . 5 II = (TopOpen‘(ℂflds (0[,]1)))
6563, 64mgptopn 18544 . . . 4 II = (TopOpen‘((mulGrp‘ℂfld) ↾s (0[,]1)))
66 cnfldbas 19798 . . . . . . 7 ℂ = (Base‘ℂfld)
6761, 66mgpbas 18541 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
68 cnfldmul 19800 . . . . . . 7 · = (.r‘ℂfld)
6961, 68mgpplusg 18539 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
707, 8ax-mp 5 . . . . . 6 · Fn (ℂ × ℂ)
7167, 56, 69, 70, 4ressplusf 29778 . . . . 5 (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1))) = ( · ↾ ((0[,]1) × (0[,]1)))
7271eqcomi 2660 . . . 4 ( · ↾ ((0[,]1) × (0[,]1))) = (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1)))
7365, 72tmdcn 21934 . . 3 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II))
7457, 73ax-mp 5 . 2 ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II)
753, 17, 36, 37, 41, 55, 74mndpluscn 30100 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231   ⊆ wss 3607  ifcif 4119   ↦ cmpt 4762   × cxp 5141  ◡ccnv 5142   ↾ cres 5145   Fn wfn 5921  ⟶wf 5922  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  0cc0 9974  1c1 9975   · cmul 9979  +∞cpnf 10109  ℝ*cxr 10111   ≤ cle 10113  -cneg 10305   +𝑒 cxad 11982  [,]cicc 12216  expce 14836   ↾s cress 15905   ↾t crest 16128  ordTopcordt 16206  +𝑓cplusf 17286  mulGrpcmgp 18535  ℂfldccnfld 19794  TopOnctopon 20763   Cn ccn 21076   ×t ctx 21411  TopMndctmd 21921  IIcii 22725  logclog 24346 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-ordt 16208  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-ps 17247  df-tsr 17248  df-plusf 17288  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-abv 18865  df-lmod 18913  df-scaf 18914  df-sra 19220  df-rgmod 19221  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tmd 21923  df-tgp 21924  df-trg 22010  df-xms 22172  df-ms 22173  df-tms 22174  df-nm 22434  df-ngp 22435  df-nrg 22437  df-nlm 22438  df-ii 22727  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348 This theorem is referenced by:  xrge0tmdOLD  30119
 Copyright terms: Public domain W3C validator