MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0nre Structured version   Visualization version   GIF version

Theorem xrge0nre 12484
Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
xrge0nre ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞)

Proof of Theorem xrge0nre
StepHypRef Expression
1 eliccxr 12465 . . 3 (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*)
2 xrge0neqmnf 12482 . . 3 (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)
3 xrnemnf 12156 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
43biimpi 206 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
51, 2, 4syl2anc 573 . 2 (𝐴 ∈ (0[,]+∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
65orcanai 987 1 ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wo 836   = wceq 1631  wcel 2145  wne 2943  (class class class)co 6796  cr 10141  0cc0 10142  +∞cpnf 10277  -∞cmnf 10278  *cxr 10279  [,]cicc 12383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-i2m1 10210  ax-1ne0 10211  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-icc 12387
This theorem is referenced by:  voliune  30632  volfiniune  30633  omssubadd  30702  ismbl3  40717
  Copyright terms: Public domain W3C validator