![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0nemnfd | Structured version Visualization version GIF version |
Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrge0nemnfd.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0nemnfd | ⊢ (𝜑 → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10288 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → -∞ ∈ ℝ*) |
3 | iccssxr 12449 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
4 | xrge0nemnfd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) | |
5 | 3, 4 | sseldi 3742 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
6 | 0xr 10278 | . . . 4 ⊢ 0 ∈ ℝ* | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
8 | mnflt0 12152 | . . . 4 ⊢ -∞ < 0 | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ < 0) |
10 | pnfxr 10284 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → +∞ ∈ ℝ*) |
12 | iccgelb 12423 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
13 | 7, 11, 4, 12 | syl3anc 1477 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) |
14 | 2, 7, 5, 9, 13 | xrltletrd 12185 | . 2 ⊢ (𝜑 → -∞ < 𝐴) |
15 | 2, 5, 14 | xrgtned 40036 | 1 ⊢ (𝜑 → 𝐴 ≠ -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 (class class class)co 6813 0cc0 10128 +∞cpnf 10263 -∞cmnf 10264 ℝ*cxr 10265 < clt 10266 ≤ cle 10267 [,]cicc 12371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-i2m1 10196 ax-1ne0 10197 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-icc 12375 |
This theorem is referenced by: ovolsplit 40708 caragenuncllem 41232 |
Copyright terms: Public domain | W3C validator |