Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0nemnfd Structured version   Visualization version   GIF version

Theorem xrge0nemnfd 40046
Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
xrge0nemnfd.1 (𝜑𝐴 ∈ (0[,]+∞))
Assertion
Ref Expression
xrge0nemnfd (𝜑𝐴 ≠ -∞)

Proof of Theorem xrge0nemnfd
StepHypRef Expression
1 mnfxr 10288 . . 3 -∞ ∈ ℝ*
21a1i 11 . 2 (𝜑 → -∞ ∈ ℝ*)
3 iccssxr 12449 . . 3 (0[,]+∞) ⊆ ℝ*
4 xrge0nemnfd.1 . . 3 (𝜑𝐴 ∈ (0[,]+∞))
53, 4sseldi 3742 . 2 (𝜑𝐴 ∈ ℝ*)
6 0xr 10278 . . . 4 0 ∈ ℝ*
76a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
8 mnflt0 12152 . . . 4 -∞ < 0
98a1i 11 . . 3 (𝜑 → -∞ < 0)
10 pnfxr 10284 . . . . 5 +∞ ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → +∞ ∈ ℝ*)
12 iccgelb 12423 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
137, 11, 4, 12syl3anc 1477 . . 3 (𝜑 → 0 ≤ 𝐴)
142, 7, 5, 9, 13xrltletrd 12185 . 2 (𝜑 → -∞ < 𝐴)
152, 5, 14xrgtned 40036 1 (𝜑𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139  wne 2932   class class class wbr 4804  (class class class)co 6813  0cc0 10128  +∞cpnf 10263  -∞cmnf 10264  *cxr 10265   < clt 10266  cle 10267  [,]cicc 12371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-i2m1 10196  ax-1ne0 10197  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-icc 12375
This theorem is referenced by:  ovolsplit  40708  caragenuncllem  41232
  Copyright terms: Public domain W3C validator