![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifmhm | Structured version Visualization version GIF version |
Description: The defined function from the closed unit interval and the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
Ref | Expression |
---|---|
xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
xrge0iifhmeo.k | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0iifmhm | ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1)) | |
2 | 1 | iistmd 30288 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd |
3 | tmdmnd 22099 | . . . 4 ⊢ (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd |
5 | xrge0cmn 20003 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
6 | cmnmnd 18415 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
8 | 4, 7 | pm3.2i 456 | . 2 ⊢ (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
9 | xrge0iifhmeo.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
10 | 9 | xrge0iifcnv 30319 | . . . . 5 ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))) |
11 | 10 | simpli 470 | . . . 4 ⊢ 𝐹:(0[,]1)–1-1-onto→(0[,]+∞) |
12 | f1of 6279 | . . . 4 ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ 𝐹:(0[,]1)⟶(0[,]+∞) |
14 | xrge0iifhmeo.k | . . . . 5 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
15 | 9, 14 | xrge0iifhom 30323 | . . . 4 ⊢ ((𝑦 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧))) |
16 | 15 | rgen2a 3126 | . . 3 ⊢ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) |
17 | 9, 14 | xrge0iif1 30324 | . . 3 ⊢ (𝐹‘1) = 0 |
18 | 13, 16, 17 | 3pm3.2i 1423 | . 2 ⊢ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) ∧ (𝐹‘1) = 0) |
19 | unitsscn 30282 | . . . 4 ⊢ (0[,]1) ⊆ ℂ | |
20 | eqid 2771 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
21 | cnfldbas 19965 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
22 | 20, 21 | mgpbas 18703 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
23 | 1, 22 | ressbas2 16138 | . . . 4 ⊢ ((0[,]1) ⊆ ℂ → (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1)))) |
24 | 19, 23 | ax-mp 5 | . . 3 ⊢ (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
25 | xrge0base 30025 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
26 | cnfldex 19964 | . . . . 5 ⊢ ℂfld ∈ V | |
27 | ovex 6827 | . . . . 5 ⊢ (0[,]1) ∈ V | |
28 | eqid 2771 | . . . . . 6 ⊢ (ℂfld ↾s (0[,]1)) = (ℂfld ↾s (0[,]1)) | |
29 | 28, 20 | mgpress 18708 | . . . . 5 ⊢ ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1)))) |
30 | 26, 27, 29 | mp2an 672 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1))) |
31 | cnfldmul 19967 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
32 | 28, 31 | ressmulr 16214 | . . . . 5 ⊢ ((0[,]1) ∈ V → · = (.r‘(ℂfld ↾s (0[,]1)))) |
33 | 27, 32 | ax-mp 5 | . . . 4 ⊢ · = (.r‘(ℂfld ↾s (0[,]1))) |
34 | 30, 33 | mgpplusg 18701 | . . 3 ⊢ · = (+g‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
35 | xrge0plusg 30027 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
36 | cnring 19983 | . . . 4 ⊢ ℂfld ∈ Ring | |
37 | 1elunit 12498 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
38 | cnfld1 19986 | . . . . 5 ⊢ 1 = (1r‘ℂfld) | |
39 | 1, 21, 38 | ringidss 18785 | . . . 4 ⊢ ((ℂfld ∈ Ring ∧ (0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1)) → 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1)))) |
40 | 36, 19, 37, 39 | mp3an 1572 | . . 3 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
41 | xrge00 30026 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
42 | 24, 25, 34, 35, 40, 41 | ismhm 17545 | . 2 ⊢ (𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ ((((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) ∧ (𝐹‘1) = 0))) |
43 | 8, 18, 42 | mpbir2an 690 | 1 ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ⊆ wss 3723 ifcif 4226 ↦ cmpt 4864 ◡ccnv 5249 ⟶wf 6026 –1-1-onto→wf1o 6029 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 0cc0 10142 1c1 10143 · cmul 10147 +∞cpnf 10277 ≤ cle 10281 -cneg 10473 +𝑒 cxad 12149 [,]cicc 12383 expce 14998 Basecbs 16064 ↾s cress 16065 .rcmulr 16150 ↾t crest 16289 0gc0g 16308 ordTopcordt 16367 ℝ*𝑠cxrs 16368 Mndcmnd 17502 MndHom cmhm 17541 CMndccmn 18400 mulGrpcmgp 18697 Ringcrg 18755 ℂfldccnfld 19961 TopMndctmd 22094 logclog 24522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-plusf 17449 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-subrg 18988 df-abv 19027 df-lmod 19075 df-scaf 19076 df-sra 19387 df-rgmod 19388 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-tmd 22096 df-tgp 22097 df-trg 22183 df-xms 22345 df-ms 22346 df-tms 22347 df-nm 22607 df-ngp 22608 df-nrg 22610 df-nlm 22611 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 |
This theorem is referenced by: xrge0tmd 30332 |
Copyright terms: Public domain | W3C validator |