Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge00 Structured version   Visualization version   GIF version

Theorem xrge00 29814
Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
xrge00 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))

Proof of Theorem xrge00
StepHypRef Expression
1 eqid 2651 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1mnd 19832 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd
3 xrge0cmn 19836 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
4 cmnmnd 18254 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
53, 4ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
6 mnflt0 11997 . . . . . . 7 -∞ < 0
7 mnfxr 10134 . . . . . . . 8 -∞ ∈ ℝ*
8 0xr 10124 . . . . . . . 8 0 ∈ ℝ*
9 xrltnle 10143 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
107, 8, 9mp2an 708 . . . . . . 7 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
116, 10mpbi 220 . . . . . 6 ¬ 0 ≤ -∞
1211intnan 980 . . . . 5 ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)
13 elxrge0 12319 . . . . 5 (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞))
1412, 13mtbir 312 . . . 4 ¬ -∞ ∈ (0[,]+∞)
15 difsn 4360 . . . 4 (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞))
1614, 15ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)
17 iccssxr 12294 . . . 4 (0[,]+∞) ⊆ ℝ*
18 ssdif 3778 . . . 4 ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}))
1917, 18ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})
2016, 19eqsstr3i 3669 . 2 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
21 0e0iccpnf 12321 . 2 0 ∈ (0[,]+∞)
22 difss 3770 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
23 df-ss 3621 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}))
2422, 23mpbi 220 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})
25 xrex 11867 . . . . . 6 * ∈ V
26 difexg 4841 . . . . . 6 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
2725, 26ax-mp 5 . . . . 5 (ℝ* ∖ {-∞}) ∈ V
28 xrsbas 19810 . . . . . 6 * = (Base‘ℝ*𝑠)
291, 28ressbas 15977 . . . . 5 ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
3027, 29ax-mp 5 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
3124, 30eqtr3i 2675 . . 3 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
321xrs10 19833 . . 3 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
33 ovex 6718 . . . . 5 (0[,]+∞) ∈ V
34 ressress 15985 . . . . 5 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))))
3527, 33, 34mp2an 708 . . . 4 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))
36 dfss 3622 . . . . . . 7 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})))
3720, 36mpbi 220 . . . . . 6 (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))
38 incom 3838 . . . . . 6 ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))
3937, 38eqtr2i 2674 . . . . 5 ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞)
4039oveq2i 6701 . . . 4 (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠s (0[,]+∞))
4135, 40eqtr2i 2674 . . 3 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
4231, 32, 41submnd0 17367 . 2 ((((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠s (0[,]+∞))))
432, 5, 20, 21, 42mp4an 709 1 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  cin 3606  wss 3607  {csn 4210   class class class wbr 4685  cfv 5926  (class class class)co 6690  0cc0 9974  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  [,]cicc 12216  Basecbs 15904  s cress 15905  0gc0g 16147  *𝑠cxrs 16207  Mndcmnd 17341  CMndccmn 18239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-xadd 11985  df-icc 12220  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-tset 16007  df-ple 16008  df-ds 16011  df-0g 16149  df-xrs 16209  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-cmn 18241
This theorem is referenced by:  xrge0mulgnn0  29817  xrge0slmod  29972  xrge0iifmhm  30113  esumgsum  30235  esumnul  30238  esum0  30239  gsumesum  30249  esumsnf  30254  esumss  30262  esumpfinval  30265  esumpfinvalf  30266  esumcocn  30270  sitmcl  30541
  Copyright terms: Public domain W3C validator