![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xreqle | Structured version Visualization version GIF version |
Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xreqle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleid 12097 | . . 3 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
2 | 1 | adantr 472 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐴) |
3 | simpr 479 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
4 | breq2 4764 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ 𝐵)) | |
5 | 4 | biimpac 504 | . 2 ⊢ ((𝐴 ≤ 𝐴 ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
6 | 2, 3, 5 | syl2anc 696 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 class class class wbr 4760 ℝ*cxr 10186 ≤ cle 10188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-pre-lttri 10123 ax-pre-lttrn 10124 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-po 5139 df-so 5140 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 |
This theorem is referenced by: xreqled 39961 sge0split 41046 |
Copyright terms: Public domain | W3C validator |