Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xptrrel Structured version   Visualization version   GIF version

Theorem xptrrel 13841
 Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
xptrrel ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)

Proof of Theorem xptrrel
StepHypRef Expression
1 inss1 3941 . . . . . . . 8 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵)
2 dmxpss 5675 . . . . . . . 8 dom (𝐴 × 𝐵) ⊆ 𝐴
31, 2sstri 3718 . . . . . . 7 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴
4 inss2 3942 . . . . . . . 8 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
5 rnxpss 5676 . . . . . . . 8 ran (𝐴 × 𝐵) ⊆ 𝐵
64, 5sstri 3718 . . . . . . 7 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵
73, 6ssini 3944 . . . . . 6 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴𝐵)
8 eqimss 3763 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐴𝐵) ⊆ ∅)
97, 8syl5ss 3720 . . . . 5 ((𝐴𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅)
10 ss0 4082 . . . . 5 ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅)
119, 10syl 17 . . . 4 ((𝐴𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅)
1211coemptyd 13840 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅)
13 0ss 4080 . . 3 ∅ ⊆ (𝐴 × 𝐵)
1412, 13syl6eqss 3761 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
15 df-ne 2897 . . . . 5 ((𝐴𝐵) ≠ ∅ ↔ ¬ (𝐴𝐵) = ∅)
1615biimpri 218 . . . 4 (¬ (𝐴𝐵) = ∅ → (𝐴𝐵) ≠ ∅)
1716xpcoidgend 13836 . . 3 (¬ (𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
18 ssid 3730 . . 3 (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵)
1917, 18syl6eqss 3761 . 2 (¬ (𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
2014, 19pm2.61i 176 1 ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1596   ≠ wne 2896   ∩ cin 3679   ⊆ wss 3680  ∅c0 4023   × cxp 5216  dom cdm 5218  ran crn 5219   ∘ ccom 5222 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-br 4761  df-opab 4821  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230 This theorem is referenced by:  trclublem  13856  trclubgNEW  38344  trclexi  38346  cnvtrcl0  38352  xpintrreld  38377  trrelsuperreldg  38379  trrelsuperrel2dg  38382
 Copyright terms: Public domain W3C validator