![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsxms | Structured version Visualization version GIF version |
Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
xpsms.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
Ref | Expression |
---|---|
xpsxms | ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsms.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | eqid 2770 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2770 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | simpl 468 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑅 ∈ ∞MetSp) | |
5 | simpr 471 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑆 ∈ ∞MetSp) | |
6 | eqid 2770 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) | |
7 | eqid 2770 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2770 | . . 3 ⊢ ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 16439 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpslem 16440 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
11 | 6 | xpsff1o2 16438 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) |
12 | f1ocnv 6290 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | |
13 | 11, 12 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) |
14 | fvexd 6344 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → (Scalar‘𝑅) ∈ V) | |
15 | 2onn 7873 | . . . 4 ⊢ 2𝑜 ∈ ω | |
16 | nnfi 8308 | . . . 4 ⊢ (2𝑜 ∈ ω → 2𝑜 ∈ Fin) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 2𝑜 ∈ Fin) |
18 | xpscf 16433 | . . . 4 ⊢ (◡({𝑅} +𝑐 {𝑆}):2𝑜⟶∞MetSp ↔ (𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp)) | |
19 | 18 | biimpri 218 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ◡({𝑅} +𝑐 {𝑆}):2𝑜⟶∞MetSp) |
20 | 8 | prdsxms 22554 | . . 3 ⊢ (((Scalar‘𝑅) ∈ V ∧ 2𝑜 ∈ Fin ∧ ◡({𝑅} +𝑐 {𝑆}):2𝑜⟶∞MetSp) → ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ ∞MetSp) |
21 | 14, 17, 19, 20 | syl3anc 1475 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ ∞MetSp) |
22 | 9, 10, 13, 21 | imasf1oxms 22513 | 1 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 {csn 4314 × cxp 5247 ◡ccnv 5248 ran crn 5250 ⟶wf 6027 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 ωcom 7211 2𝑜c2o 7706 Fincfn 8108 +𝑐 ccda 9190 Basecbs 16063 Scalarcsca 16151 Xscprds 16313 ×s cxps 16373 ∞MetSpcxme 22341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-icc 12386 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-bl 19955 df-mopn 19956 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-xms 22344 |
This theorem is referenced by: tmsxps 22560 tmsxpsmopn 22561 |
Copyright terms: Public domain | W3C validator |