MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsxmet Structured version   Visualization version   GIF version

Theorem xpsxmet 22405
Description: A product metric of extended metrics is an extended metric. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsds.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
xpsds.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
Assertion
Ref Expression
xpsxmet (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))

Proof of Theorem xpsxmet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 xpsds.x . . 3 𝑋 = (Base‘𝑅)
3 xpsds.y . . 3 𝑌 = (Base‘𝑆)
4 xpsds.1 . . 3 (𝜑𝑅𝑉)
5 xpsds.2 . . 3 (𝜑𝑆𝑊)
6 eqid 2771 . . 3 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
7 eqid 2771 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2771 . . 3 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
91, 2, 3, 4, 5, 6, 7, 8xpsval 16440 . 2 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
101, 2, 3, 4, 5, 6, 7, 8xpslem 16441 . 2 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
116xpsff1o2 16439 . . 3 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
12 f1ocnv 6290 . . 3 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) → (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌))
1311, 12mp1i 13 . 2 (𝜑(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌))
14 ovexd 6825 . 2 (𝜑 → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) ∈ V)
15 eqid 2771 . 2 ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) = ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
16 xpsds.p . 2 𝑃 = (dist‘𝑇)
17 xpsds.m . . . 4 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
18 xpsds.n . . . 4 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
19 xpsds.3 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
20 xpsds.4 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
211, 2, 3, 4, 5, 16, 17, 18, 19, 20xpsxmetlem 22404 . . 3 (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
22 ssid 3773 . . 3 ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ⊆ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
23 xmetres2 22386 . . 3 (((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) ∧ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ⊆ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) → ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
2421, 22, 23sylancl 574 . 2 (𝜑 → ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
259, 10, 13, 14, 15, 16, 24imasf1oxmet 22400 1 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723  {csn 4316   × cxp 5247  ccnv 5248  ran crn 5250  cres 5251  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  cmpt2 6795   +𝑐 ccda 9191  Basecbs 16064  Scalarcsca 16152  distcds 16158  Xscprds 16314   ×s cxps 16374  ∞Metcxmt 19946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-hom 16174  df-cco 16175  df-0g 16310  df-gsum 16311  df-prds 16316  df-xrs 16370  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-xmet 19954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator