Proof of Theorem xpstopnlem2
Step | Hyp | Ref
| Expression |
1 | | eqid 2651 |
. . . . 5
⊢
((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) |
2 | | fvexd 6241 |
. . . . 5
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(Scalar‘𝑅) ∈
V) |
3 | | 2on 7613 |
. . . . . 6
⊢
2𝑜 ∈ On |
4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
2𝑜 ∈ On) |
5 | | xpscfn 16266 |
. . . . 5
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡({𝑅} +𝑐 {𝑆}) Fn
2𝑜) |
6 | | eqid 2651 |
. . . . 5
⊢
(TopOpen‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) = (TopOpen‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) |
7 | 1, 2, 4, 5, 6 | prdstopn 21479 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) = (∏t‘(TopOpen
∘ ◡({𝑅} +𝑐 {𝑆})))) |
8 | | topnfn 16133 |
. . . . . . . 8
⊢ TopOpen
Fn V |
9 | | dffn2 6085 |
. . . . . . . . 9
⊢ (◡({𝑅} +𝑐 {𝑆}) Fn 2𝑜 ↔ ◡({𝑅} +𝑐 {𝑆}):2𝑜⟶V) |
10 | 5, 9 | sylib 208 |
. . . . . . . 8
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡({𝑅} +𝑐 {𝑆}):2𝑜⟶V) |
11 | | fnfco 6107 |
. . . . . . . 8
⊢ ((TopOpen
Fn V ∧ ◡({𝑅} +𝑐 {𝑆}):2𝑜⟶V) →
(TopOpen ∘ ◡({𝑅} +𝑐 {𝑆})) Fn
2𝑜) |
12 | 8, 10, 11 | sylancr 696 |
. . . . . . 7
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen
∘ ◡({𝑅} +𝑐 {𝑆})) Fn
2𝑜) |
13 | | xpsfeq 16271 |
. . . . . . 7
⊢ ((TopOpen
∘ ◡({𝑅} +𝑐 {𝑆})) Fn 2𝑜 → ◡({((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐
{((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘1𝑜)}) =
(TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡({((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐
{((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘1𝑜)}) =
(TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))) |
15 | | 0ex 4823 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
16 | 15 | prid1 4329 |
. . . . . . . . . . . 12
⊢ ∅
∈ {∅, 1𝑜} |
17 | | df2o3 7618 |
. . . . . . . . . . . 12
⊢
2𝑜 = {∅,
1𝑜} |
18 | 16, 17 | eleqtrri 2729 |
. . . . . . . . . . 11
⊢ ∅
∈ 2𝑜 |
19 | | fvco2 6312 |
. . . . . . . . . . 11
⊢ ((◡({𝑅} +𝑐 {𝑆}) Fn 2𝑜 ∧ ∅
∈ 2𝑜) → ((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘∅) = (TopOpen‘(◡({𝑅} +𝑐 {𝑆})‘∅))) |
20 | 5, 18, 19 | sylancl 695 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen
∘ ◡({𝑅} +𝑐 {𝑆}))‘∅) = (TopOpen‘(◡({𝑅} +𝑐 {𝑆})‘∅))) |
21 | | xpsc0 16267 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ TopSp → (◡({𝑅} +𝑐 {𝑆})‘∅) = 𝑅) |
22 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (◡({𝑅} +𝑐 {𝑆})‘∅) = 𝑅) |
23 | 22 | fveq2d 6233 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘(◡({𝑅} +𝑐 {𝑆})‘∅)) = (TopOpen‘𝑅)) |
24 | | xpstopn.j |
. . . . . . . . . . 11
⊢ 𝐽 = (TopOpen‘𝑅) |
25 | 23, 24 | syl6eqr 2703 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘(◡({𝑅} +𝑐 {𝑆})‘∅)) = 𝐽) |
26 | 20, 25 | eqtrd 2685 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen
∘ ◡({𝑅} +𝑐 {𝑆}))‘∅) = 𝐽) |
27 | 26 | sneqd 4222 |
. . . . . . . 8
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {((TopOpen
∘ ◡({𝑅} +𝑐 {𝑆}))‘∅)} = {𝐽}) |
28 | | 1on 7612 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ On |
29 | 28 | elexi 3244 |
. . . . . . . . . . . . 13
⊢
1𝑜 ∈ V |
30 | 29 | prid2 4330 |
. . . . . . . . . . . 12
⊢
1𝑜 ∈ {∅,
1𝑜} |
31 | 30, 17 | eleqtrri 2729 |
. . . . . . . . . . 11
⊢
1𝑜 ∈ 2𝑜 |
32 | | fvco2 6312 |
. . . . . . . . . . 11
⊢ ((◡({𝑅} +𝑐 {𝑆}) Fn 2𝑜 ∧
1𝑜 ∈ 2𝑜) → ((TopOpen ∘
◡({𝑅} +𝑐 {𝑆}))‘1𝑜) =
(TopOpen‘(◡({𝑅} +𝑐 {𝑆})‘1𝑜))) |
33 | 5, 31, 32 | sylancl 695 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen
∘ ◡({𝑅} +𝑐 {𝑆}))‘1𝑜) =
(TopOpen‘(◡({𝑅} +𝑐 {𝑆})‘1𝑜))) |
34 | | xpsc1 16268 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ TopSp → (◡({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆) |
35 | 34 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (◡({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆) |
36 | 35 | fveq2d 6233 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘(◡({𝑅} +𝑐 {𝑆})‘1𝑜)) =
(TopOpen‘𝑆)) |
37 | | xpstopn.k |
. . . . . . . . . . 11
⊢ 𝐾 = (TopOpen‘𝑆) |
38 | 36, 37 | syl6eqr 2703 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘(◡({𝑅} +𝑐 {𝑆})‘1𝑜)) = 𝐾) |
39 | 33, 38 | eqtrd 2685 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen
∘ ◡({𝑅} +𝑐 {𝑆}))‘1𝑜) = 𝐾) |
40 | 39 | sneqd 4222 |
. . . . . . . 8
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {((TopOpen
∘ ◡({𝑅} +𝑐 {𝑆}))‘1𝑜)} = {𝐾}) |
41 | 27, 40 | oveq12d 6708 |
. . . . . . 7
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
({((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘∅)}
+𝑐 {((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = ({𝐽} +𝑐 {𝐾})) |
42 | 41 | cnveqd 5330 |
. . . . . 6
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡({((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐
{((TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = ◡({𝐽} +𝑐 {𝐾})) |
43 | 14, 42 | eqtr3d 2687 |
. . . . 5
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen
∘ ◡({𝑅} +𝑐 {𝑆})) = ◡({𝐽} +𝑐 {𝐾})) |
44 | 43 | fveq2d 6233 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(∏t‘(TopOpen ∘ ◡({𝑅} +𝑐 {𝑆}))) = (∏t‘◡({𝐽} +𝑐 {𝐾}))) |
45 | 7, 44 | eqtrd 2685 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) = (∏t‘◡({𝐽} +𝑐 {𝐾}))) |
46 | 45 | oveq1d 6705 |
. 2
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
((TopOpen‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) qTop ◡𝐹) = ((∏t‘◡({𝐽} +𝑐 {𝐾})) qTop ◡𝐹)) |
47 | | xpstps.t |
. . . 4
⊢ 𝑇 = (𝑅 ×s 𝑆) |
48 | | xpstopnlem.x |
. . . 4
⊢ 𝑋 = (Base‘𝑅) |
49 | | xpstopnlem.y |
. . . 4
⊢ 𝑌 = (Base‘𝑆) |
50 | | simpl 472 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp) |
51 | | simpr 476 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp) |
52 | | xpstopnlem.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) |
53 | | eqid 2651 |
. . . 4
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) |
54 | 47, 48, 49, 50, 51, 52, 53, 1 | xpsval 16279 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (◡𝐹 “s
((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
55 | 47, 48, 49, 50, 51, 52, 53, 1 | xpslem 16280 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 =
(Base‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
56 | 52 | xpsff1o2 16278 |
. . . . 5
⊢ 𝐹:(𝑋 × 𝑌)–1-1-onto→ran
𝐹 |
57 | | f1ocnv 6187 |
. . . . 5
⊢ (𝐹:(𝑋 × 𝑌)–1-1-onto→ran
𝐹 → ◡𝐹:ran 𝐹–1-1-onto→(𝑋 × 𝑌)) |
58 | 56, 57 | mp1i 13 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡𝐹:ran 𝐹–1-1-onto→(𝑋 × 𝑌)) |
59 | | f1ofo 6182 |
. . . 4
⊢ (◡𝐹:ran 𝐹–1-1-onto→(𝑋 × 𝑌) → ◡𝐹:ran 𝐹–onto→(𝑋 × 𝑌)) |
60 | 58, 59 | syl 17 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡𝐹:ran 𝐹–onto→(𝑋 × 𝑌)) |
61 | | ovexd 6720 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ V) |
62 | | xpstopn.o |
. . 3
⊢ 𝑂 = (TopOpen‘𝑇) |
63 | 54, 55, 60, 61, 6, 62 | imastopn 21571 |
. 2
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 =
((TopOpen‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆}))) qTop ◡𝐹)) |
64 | 48, 24 | istps 20786 |
. . . . 5
⊢ (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
65 | 50, 64 | sylib 208 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋)) |
66 | 49, 37 | istps 20786 |
. . . . 5
⊢ (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌)) |
67 | 51, 66 | sylib 208 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌)) |
68 | 52, 65, 67 | xpstopnlem1 21660 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘◡({𝐽} +𝑐 {𝐾})))) |
69 | | hmeocnv 21613 |
. . 3
⊢ (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘◡({𝐽} +𝑐 {𝐾}))) → ◡𝐹 ∈ ((∏t‘◡({𝐽} +𝑐 {𝐾}))Homeo(𝐽 ×t 𝐾))) |
70 | | hmeoqtop 21626 |
. . 3
⊢ (◡𝐹 ∈ ((∏t‘◡({𝐽} +𝑐 {𝐾}))Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) = ((∏t‘◡({𝐽} +𝑐 {𝐾})) qTop ◡𝐹)) |
71 | 68, 69, 70 | 3syl 18 |
. 2
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) =
((∏t‘◡({𝐽} +𝑐 {𝐾})) qTop ◡𝐹)) |
72 | 46, 63, 71 | 3eqtr4d 2695 |
1
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾)) |