Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpssca Structured version   Visualization version   GIF version

Theorem xpssca 16446
 Description: Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 ×s 𝑆)
xpssca.g 𝐺 = (Scalar‘𝑅)
xpssca.1 (𝜑𝑅𝑉)
xpssca.2 (𝜑𝑆𝑊)
Assertion
Ref Expression
xpssca (𝜑𝐺 = (Scalar‘𝑇))

Proof of Theorem xpssca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpssca.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2771 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2771 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 xpssca.1 . . 3 (𝜑𝑅𝑉)
5 xpssca.2 . . 3 (𝜑𝑆𝑊)
6 eqid 2771 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))
7 xpssca.g . . 3 𝐺 = (Scalar‘𝑅)
8 eqid 2771 . . 3 (𝐺Xs({𝑅} +𝑐 {𝑆})) = (𝐺Xs({𝑅} +𝑐 {𝑆}))
91, 2, 3, 4, 5, 6, 7, 8xpsval 16440 . 2 (𝜑𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) “s (𝐺Xs({𝑅} +𝑐 {𝑆}))))
101, 2, 3, 4, 5, 6, 7, 8xpslem 16441 . 2 (𝜑 → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) = (Base‘(𝐺Xs({𝑅} +𝑐 {𝑆}))))
116xpsff1o2 16439 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))
12 f1ocnv 6290 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
1311, 12mp1i 13 . . 3 (𝜑(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
14 f1ofo 6285 . . 3 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–onto→((Base‘𝑅) × (Base‘𝑆)))
1513, 14syl 17 . 2 (𝜑(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–onto→((Base‘𝑅) × (Base‘𝑆)))
16 ovexd 6825 . 2 (𝜑 → (𝐺Xs({𝑅} +𝑐 {𝑆})) ∈ V)
17 fvex 6342 . . . . . 6 (Scalar‘𝑅) ∈ V
187, 17eqeltri 2846 . . . . 5 𝐺 ∈ V
1918a1i 11 . . . 4 (⊤ → 𝐺 ∈ V)
20 ovex 6823 . . . . . 6 ({𝑅} +𝑐 {𝑆}) ∈ V
2120cnvex 7260 . . . . 5 ({𝑅} +𝑐 {𝑆}) ∈ V
2221a1i 11 . . . 4 (⊤ → ({𝑅} +𝑐 {𝑆}) ∈ V)
238, 19, 22prdssca 16324 . . 3 (⊤ → 𝐺 = (Scalar‘(𝐺Xs({𝑅} +𝑐 {𝑆}))))
2423trud 1641 . 2 𝐺 = (Scalar‘(𝐺Xs({𝑅} +𝑐 {𝑆})))
259, 10, 15, 16, 24imassca 16387 1 (𝜑𝐺 = (Scalar‘𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631  ⊤wtru 1632   ∈ wcel 2145  Vcvv 3351  {csn 4316   × cxp 5247  ◡ccnv 5248  ran crn 5250  –onto→wfo 6029  –1-1-onto→wf1o 6030  ‘cfv 6031  (class class class)co 6793   ↦ cmpt2 6795   +𝑐 ccda 9191  Basecbs 16064  Scalarcsca 16152  Xscprds 16314   ×s cxps 16374 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-hom 16174  df-cco 16175  df-prds 16316  df-imas 16376  df-xps 16378 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator