![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpssca | Structured version Visualization version GIF version |
Description: Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpssca.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpssca.g | ⊢ 𝐺 = (Scalar‘𝑅) |
xpssca.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
xpssca.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
Ref | Expression |
---|---|
xpssca | ⊢ (𝜑 → 𝐺 = (Scalar‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpssca.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | eqid 2771 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2771 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | xpssca.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | xpssca.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
6 | eqid 2771 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) | |
7 | xpssca.g | . . 3 ⊢ 𝐺 = (Scalar‘𝑅) | |
8 | eqid 2771 | . . 3 ⊢ (𝐺Xs◡({𝑅} +𝑐 {𝑆})) = (𝐺Xs◡({𝑅} +𝑐 {𝑆})) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 16440 | . 2 ⊢ (𝜑 → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) “s (𝐺Xs◡({𝑅} +𝑐 {𝑆})))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpslem 16441 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) = (Base‘(𝐺Xs◡({𝑅} +𝑐 {𝑆})))) |
11 | 6 | xpsff1o2 16439 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) |
12 | f1ocnv 6290 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | |
13 | 11, 12 | mp1i 13 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) |
14 | f1ofo 6285 | . . 3 ⊢ (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–onto→((Base‘𝑅) × (Base‘𝑆))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–onto→((Base‘𝑅) × (Base‘𝑆))) |
16 | ovexd 6825 | . 2 ⊢ (𝜑 → (𝐺Xs◡({𝑅} +𝑐 {𝑆})) ∈ V) | |
17 | fvex 6342 | . . . . . 6 ⊢ (Scalar‘𝑅) ∈ V | |
18 | 7, 17 | eqeltri 2846 | . . . . 5 ⊢ 𝐺 ∈ V |
19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐺 ∈ V) |
20 | ovex 6823 | . . . . . 6 ⊢ ({𝑅} +𝑐 {𝑆}) ∈ V | |
21 | 20 | cnvex 7260 | . . . . 5 ⊢ ◡({𝑅} +𝑐 {𝑆}) ∈ V |
22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → ◡({𝑅} +𝑐 {𝑆}) ∈ V) |
23 | 8, 19, 22 | prdssca 16324 | . . 3 ⊢ (⊤ → 𝐺 = (Scalar‘(𝐺Xs◡({𝑅} +𝑐 {𝑆})))) |
24 | 23 | trud 1641 | . 2 ⊢ 𝐺 = (Scalar‘(𝐺Xs◡({𝑅} +𝑐 {𝑆}))) |
25 | 9, 10, 15, 16, 24 | imassca 16387 | 1 ⊢ (𝜑 → 𝐺 = (Scalar‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ⊤wtru 1632 ∈ wcel 2145 Vcvv 3351 {csn 4316 × cxp 5247 ◡ccnv 5248 ran crn 5250 –onto→wfo 6029 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 +𝑐 ccda 9191 Basecbs 16064 Scalarcsca 16152 Xscprds 16314 ×s cxps 16374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-hom 16174 df-cco 16175 df-prds 16316 df-imas 16376 df-xps 16378 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |