![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3765 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5281 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
3 | 1, 2 | mpan 708 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3715 × cxp 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-in 3722 df-ss 3729 df-opab 4865 df-xp 5272 |
This theorem is referenced by: xpdom3 8223 marypha1lem 8504 unctb 9219 axresscn 10161 imasvscafn 16399 imasvscaf 16401 xpsc0 16422 xpsc1 16423 gass 17934 gsum2d 18571 tx2cn 21615 txtube 21645 txcmplem1 21646 hausdiag 21650 xkoinjcn 21692 caussi 23295 dvfval 23860 issh2 28375 qtophaus 30212 2ndmbfm 30632 sxbrsigalem0 30642 cvmlift2lem9 31600 cvmlift2lem11 31602 filnetlem3 32681 idresssidinxp 34403 trclexi 38429 cnvtrcl0 38435 ovolval5lem2 41373 ovnovollem1 41376 ovnovollem2 41377 |
Copyright terms: Public domain | W3C validator |