![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss1 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3657 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5158 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
3 | 1, 2 | mpan2 707 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3607 × cxp 5141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-in 3614 df-ss 3621 df-opab 4746 df-xp 5149 |
This theorem is referenced by: ssres2 5460 funssxp 6099 tposssxp 7401 tpostpos2 7418 unxpwdom2 8534 dfac12lem2 9004 axdc3lem 9310 fpwwe2 9503 canthp1lem2 9513 pwfseqlem5 9523 wrdexg 13347 imasvscafn 16244 imasvscaf 16246 gasubg 17781 mamures 20244 mdetrlin 20456 mdetrsca 20457 mdetunilem9 20474 mdetmul 20477 tx1cn 21460 cxpcn3 24534 imadifxp 29540 1stmbfm 30450 sxbrsigalem0 30461 cvmlift2lem1 31410 cvmlift2lem9 31419 poimirlem32 33571 trclexi 38244 cnvtrcl0 38250 volicoff 40530 volicofmpt 40532 issmflem 41257 |
Copyright terms: Public domain | W3C validator |