![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss | Structured version Visualization version GIF version |
Description: A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
xpss | ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3766 | . 2 ⊢ 𝐴 ⊆ V | |
2 | ssv 3766 | . 2 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5281 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (V × V)) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 × 𝐵) ⊆ (V × V) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3340 ⊆ wss 3715 × cxp 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-opab 4865 df-xp 5272 |
This theorem is referenced by: relxp 5283 copsex2ga 5387 eqbrrdva 5447 relrelss 5820 dff3 6535 eqopi 7369 op1steq 7377 dfoprab4 7392 infxpenlem 9026 nqerf 9944 uzrdgfni 12951 reltrclfv 13957 homarel 16887 relxpchom 17022 frmdplusg 17592 upxp 21628 ustrel 22216 utop2nei 22255 utop3cls 22256 fmucndlem 22296 metustrel 22558 xppreima2 29759 df1stres 29790 df2ndres 29791 f1od2 29808 fpwrelmap 29817 metideq 30245 metider 30246 pstmfval 30248 xpinpreima2 30262 tpr2rico 30267 esum2d 30464 dya2iocnrect 30652 mpstssv 31743 txprel 32292 bj-elid2 33397 elxp8 33530 mblfinlem1 33759 xrnrel 34458 dihvalrel 37070 rfovcnvf1od 38800 ovolval2lem 41363 sprsymrelfo 42257 |
Copyright terms: Public domain | W3C validator |