![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsneng | Structured version Visualization version GIF version |
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.) |
Ref | Expression |
---|---|
xpsneng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5263 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦})) | |
2 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | 1, 2 | breq12d 4797 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴)) |
4 | sneq 4324 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
5 | 4 | xpeq2d 5279 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵})) |
6 | 5 | breq1d 4794 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴)) |
7 | vex 3352 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3352 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpsnen 8199 | . 2 ⊢ (𝑥 × {𝑦}) ≈ 𝑥 |
10 | 3, 6, 9 | vtocl2g 3419 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {csn 4314 class class class wbr 4784 × cxp 5247 ≈ cen 8105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-int 4610 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-en 8109 |
This theorem is referenced by: xp1en 8201 xpsnen2g 8208 xpdom3 8213 disjen 8272 unxpdom2 8323 sucxpdom 8324 uncdadom 9194 cdaun 9195 cdaen 9196 cda1dif 9199 cdacomen 9204 cdaassen 9205 xpcdaen 9206 mapcdaen 9207 cdaxpdom 9212 cdafi 9213 cdainf 9215 infcda1 9216 pwcdadom 9239 isfin4-3 9338 pwcdandom 9690 gchxpidm 9692 frlmiscvec 20404 |
Copyright terms: Public domain | W3C validator |