MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsneng Structured version   Visualization version   GIF version

Theorem xpsneng 8200
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
Assertion
Ref Expression
xpsneng ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)

Proof of Theorem xpsneng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5263 . . 3 (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦}))
2 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2breq12d 4797 . 2 (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴))
4 sneq 4324 . . . 4 (𝑦 = 𝐵 → {𝑦} = {𝐵})
54xpeq2d 5279 . . 3 (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵}))
65breq1d 4794 . 2 (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴))
7 vex 3352 . . 3 𝑥 ∈ V
8 vex 3352 . . 3 𝑦 ∈ V
97, 8xpsnen 8199 . 2 (𝑥 × {𝑦}) ≈ 𝑥
103, 6, 9vtocl2g 3419 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  {csn 4314   class class class wbr 4784   × cxp 5247  cen 8105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-int 4610  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-en 8109
This theorem is referenced by:  xp1en  8201  xpsnen2g  8208  xpdom3  8213  disjen  8272  unxpdom2  8323  sucxpdom  8324  uncdadom  9194  cdaun  9195  cdaen  9196  cda1dif  9199  cdacomen  9204  cdaassen  9205  xpcdaen  9206  mapcdaen  9207  cdaxpdom  9212  cdafi  9213  cdainf  9215  infcda1  9216  pwcdadom  9239  isfin4-3  9338  pwcdandom  9690  gchxpidm  9692  frlmiscvec  20404
  Copyright terms: Public domain W3C validator