MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsn Structured version   Visualization version   GIF version

Theorem xpsn 6570
Description: The Cartesian product of two singletons. (Contributed by NM, 4-Nov-2006.)
Hypotheses
Ref Expression
xpsn.1 𝐴 ∈ V
xpsn.2 𝐵 ∈ V
Assertion
Ref Expression
xpsn ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}

Proof of Theorem xpsn
StepHypRef Expression
1 xpsn.1 . 2 𝐴 ∈ V
2 xpsn.2 . 2 𝐵 ∈ V
3 xpsng 6569 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
41, 2, 3mp2an 710 1 ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  Vcvv 3340  {csn 4321  cop 4327   × cxp 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056
This theorem is referenced by:  dfmpt  6573  fpar  7449  mapsnconst  8069  ixpsnf1o  8114  cda1dif  9190  infcda1  9207  s1co  13779  xpsc0  16422  xpsc1  16423  mat1f1o  20486  txdis  21637  pt1hmeo  21811  utop2nei  22255  utop3cls  22256  imasdsf1olem  22379  ex-xp  27604  poimirlem3  33725  poimirlem4  33726  poimirlem9  33731  poimirlem28  33750  grposnOLD  33994  dib0  36955
  Copyright terms: Public domain W3C validator