![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsn | Structured version Visualization version GIF version |
Description: The Cartesian product of two singletons. (Contributed by NM, 4-Nov-2006.) |
Ref | Expression |
---|---|
xpsn.1 | ⊢ 𝐴 ∈ V |
xpsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpsn | ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpsng 6569 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 Vcvv 3340 {csn 4321 〈cop 4327 × cxp 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 |
This theorem is referenced by: dfmpt 6573 fpar 7449 mapsnconst 8069 ixpsnf1o 8114 cda1dif 9190 infcda1 9207 s1co 13779 xpsc0 16422 xpsc1 16423 mat1f1o 20486 txdis 21637 pt1hmeo 21811 utop2nei 22255 utop3cls 22256 imasdsf1olem 22379 ex-xp 27604 poimirlem3 33725 poimirlem4 33726 poimirlem9 33731 poimirlem28 33750 grposnOLD 33994 dib0 36955 |
Copyright terms: Public domain | W3C validator |