![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsfval | Structured version Visualization version GIF version |
Description: The value of the function appearing in xpsval 16440. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) |
Ref | Expression |
---|---|
xpsfval | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = ◡({𝑋} +𝑐 {𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4326 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
2 | sneq 4326 | . . . 4 ⊢ (𝑦 = 𝑌 → {𝑦} = {𝑌}) | |
3 | 1, 2 | oveqan12d 6812 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ({𝑥} +𝑐 {𝑦}) = ({𝑋} +𝑐 {𝑌})) |
4 | 3 | cnveqd 5436 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ◡({𝑥} +𝑐 {𝑦}) = ◡({𝑋} +𝑐 {𝑌})) |
5 | xpsff1o.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) | |
6 | ovex 6823 | . . 3 ⊢ ({𝑋} +𝑐 {𝑌}) ∈ V | |
7 | 6 | cnvex 7260 | . 2 ⊢ ◡({𝑋} +𝑐 {𝑌}) ∈ V |
8 | 4, 5, 7 | ovmpt2a 6938 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = ◡({𝑋} +𝑐 {𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {csn 4316 ◡ccnv 5248 (class class class)co 6793 ↦ cmpt2 6795 +𝑐 ccda 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 |
This theorem is referenced by: xpsff1o 16436 xpsaddlem 16443 xpsvsca 16447 xpsle 16449 xpsdsval 22406 |
Copyright terms: Public domain | W3C validator |