![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsfrn | Structured version Visualization version GIF version |
Description: A short expression for the indexed cartesian product on two indexes. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) |
Ref | Expression |
---|---|
xpsfrn | ⊢ ran 𝐹 = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) | |
2 | 1 | xpsff1o 16450 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) |
3 | f1ofo 6306 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)) | |
4 | forn 6280 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → ran 𝐹 = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)) | |
5 | 2, 3, 4 | mp2b 10 | 1 ⊢ ran 𝐹 = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∅c0 4058 ifcif 4230 {csn 4321 × cxp 5264 ◡ccnv 5265 ran crn 5267 –onto→wfo 6047 –1-1-onto→wf1o 6048 (class class class)co 6814 ↦ cmpt2 6816 2𝑜c2o 7724 Xcixp 8076 +𝑐 ccda 9201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-cda 9202 |
This theorem is referenced by: xpsfrn2 16452 xpslem 16455 |
Copyright terms: Public domain | W3C validator |