![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsff1o2 | Structured version Visualization version GIF version |
Description: The function appearing in xpsval 16355 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2𝑜 = {∅, 1𝑜}. (Contributed by Mario Carneiro, 24-Jan-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) |
Ref | Expression |
---|---|
xpsff1o2 | ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) | |
2 | 1 | xpsff1o 16351 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) |
3 | f1of1 6249 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)) | |
4 | f1f1orn 6261 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹) | |
5 | 2, 3, 4 | mp2b 10 | 1 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ∅c0 4023 ifcif 4194 {csn 4285 × cxp 5216 ◡ccnv 5217 ran crn 5219 –1-1→wf1 5998 –1-1-onto→wf1o 6000 (class class class)co 6765 ↦ cmpt2 6767 2𝑜c2o 7674 Xcixp 8025 +𝑐 ccda 9102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-oadd 7684 df-er 7862 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-cda 9103 |
This theorem is referenced by: xpsbas 16357 xpsaddlem 16358 xpsadd 16359 xpsmul 16360 xpssca 16361 xpsvsca 16362 xpsless 16363 xpsle 16364 xpsmnd 17452 xpsgrp 17656 xpstps 21736 xpstopnlem2 21737 xpsdsfn 22304 xpsxmet 22307 xpsdsval 22308 xpsmet 22309 xpsxms 22461 xpsms 22462 |
Copyright terms: Public domain | W3C validator |