![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpscg | Structured version Visualization version GIF version |
Description: A short expression for the pair function mapping 0 to 𝐴 and 1 to 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
xpscg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡({𝐴} +𝑐 {𝐵}) = {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4823 | . . . 4 ⊢ ∅ ∈ V | |
2 | xpsng 6446 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × {𝐴}) = {〈∅, 𝐴〉}) | |
3 | 1, 2 | mpan 706 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({∅} × {𝐴}) = {〈∅, 𝐴〉}) |
4 | 1on 7612 | . . . 4 ⊢ 1𝑜 ∈ On | |
5 | xpsng 6446 | . . . 4 ⊢ ((1𝑜 ∈ On ∧ 𝐵 ∈ 𝑊) → ({1𝑜} × {𝐵}) = {〈1𝑜, 𝐵〉}) | |
6 | 4, 5 | mpan 706 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ({1𝑜} × {𝐵}) = {〈1𝑜, 𝐵〉}) |
7 | uneq12 3795 | . . 3 ⊢ ((({∅} × {𝐴}) = {〈∅, 𝐴〉} ∧ ({1𝑜} × {𝐵}) = {〈1𝑜, 𝐵〉}) → (({∅} × {𝐴}) ∪ ({1𝑜} × {𝐵})) = ({〈∅, 𝐴〉} ∪ {〈1𝑜, 𝐵〉})) | |
8 | 3, 6, 7 | syl2an 493 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × {𝐴}) ∪ ({1𝑜} × {𝐵})) = ({〈∅, 𝐴〉} ∪ {〈1𝑜, 𝐵〉})) |
9 | xpsc 16264 | . 2 ⊢ ◡({𝐴} +𝑐 {𝐵}) = (({∅} × {𝐴}) ∪ ({1𝑜} × {𝐵})) | |
10 | df-pr 4213 | . 2 ⊢ {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉} = ({〈∅, 𝐴〉} ∪ {〈1𝑜, 𝐵〉}) | |
11 | 8, 9, 10 | 3eqtr4g 2710 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡({𝐴} +𝑐 {𝐵}) = {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ∅c0 3948 {csn 4210 {cpr 4212 〈cop 4216 × cxp 5141 ◡ccnv 5142 Oncon0 5761 (class class class)co 6690 1𝑜c1o 7598 +𝑐 ccda 9027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-ord 5764 df-on 5765 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1o 7605 df-cda 9028 |
This theorem is referenced by: xpscfn 16266 xpstopnlem1 21660 |
Copyright terms: Public domain | W3C validator |