![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpscf | Structured version Visualization version GIF version |
Description: Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xpscf | ⊢ (◡({𝑋} +𝑐 {𝑌}):2𝑜⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid 4264 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝐴, 𝐴) = 𝐴 | |
2 | 1 | eleq2i 2842 | . . . . 5 ⊢ ((◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ 𝐴) |
3 | 2 | ralbii 3129 | . . . 4 ⊢ (∀𝑘 ∈ 2𝑜 (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴) ↔ ∀𝑘 ∈ 2𝑜 (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ 𝐴) |
4 | 3 | anbi2i 609 | . . 3 ⊢ ((◡({𝑋} +𝑐 {𝑌}) Fn 2𝑜 ∧ ∀𝑘 ∈ 2𝑜 (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴)) ↔ (◡({𝑋} +𝑐 {𝑌}) Fn 2𝑜 ∧ ∀𝑘 ∈ 2𝑜 (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ 𝐴)) |
5 | ovex 6823 | . . . . 5 ⊢ ({𝑋} +𝑐 {𝑌}) ∈ V | |
6 | 5 | cnvex 7260 | . . . 4 ⊢ ◡({𝑋} +𝑐 {𝑌}) ∈ V |
7 | 6 | elixp 8069 | . . 3 ⊢ (◡({𝑋} +𝑐 {𝑌}) ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐴) ↔ (◡({𝑋} +𝑐 {𝑌}) Fn 2𝑜 ∧ ∀𝑘 ∈ 2𝑜 (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐴))) |
8 | ffnfv 6530 | . . 3 ⊢ (◡({𝑋} +𝑐 {𝑌}):2𝑜⟶𝐴 ↔ (◡({𝑋} +𝑐 {𝑌}) Fn 2𝑜 ∧ ∀𝑘 ∈ 2𝑜 (◡({𝑋} +𝑐 {𝑌})‘𝑘) ∈ 𝐴)) | |
9 | 4, 7, 8 | 3bitr4i 292 | . 2 ⊢ (◡({𝑋} +𝑐 {𝑌}) ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐴) ↔ ◡({𝑋} +𝑐 {𝑌}):2𝑜⟶𝐴) |
10 | xpsfrnel2 16433 | . 2 ⊢ (◡({𝑋} +𝑐 {𝑌}) ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | |
11 | 9, 10 | bitr3i 266 | 1 ⊢ (◡({𝑋} +𝑐 {𝑌}):2𝑜⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∅c0 4063 ifcif 4225 {csn 4316 ◡ccnv 5248 Fn wfn 6026 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 2𝑜c2o 7707 Xcixp 8062 +𝑐 ccda 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-cda 9192 |
This theorem is referenced by: xpsmnd 17538 xpsgrp 17742 dmdprdpr 18656 dprdpr 18657 xpstopnlem1 21833 xpstps 21834 xpsxms 22559 xpsms 22560 |
Copyright terms: Public domain | W3C validator |