![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpprsng | Structured version Visualization version GIF version |
Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.) |
Ref | Expression |
---|---|
xpprsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4316 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | 1 | xpeq1i 5284 | . 2 ⊢ ({𝐴, 𝐵} × {𝐶}) = (({𝐴} ∪ {𝐵}) × {𝐶}) |
3 | xpsng 6561 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) | |
4 | 3 | 3adant2 1125 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) |
5 | xpsng 6561 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) | |
6 | 5 | 3adant1 1124 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) |
7 | 4, 6 | uneq12d 3903 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉})) |
8 | xpundir 5321 | . . 3 ⊢ (({𝐴} ∪ {𝐵}) × {𝐶}) = (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) | |
9 | df-pr 4316 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉}) | |
10 | 7, 8, 9 | 3eqtr4g 2811 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} ∪ {𝐵}) × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
11 | 2, 10 | syl5eq 2798 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∪ cun 3705 {csn 4313 {cpr 4315 〈cop 4319 × cxp 5256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 |
This theorem is referenced by: zlmodzxz0 42636 |
Copyright terms: Public domain | W3C validator |