Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpprsng Structured version   Visualization version   GIF version

Theorem xpprsng 42612
Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.)
Assertion
Ref Expression
xpprsng ((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐴, 𝐵} × {𝐶}) = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩})

Proof of Theorem xpprsng
StepHypRef Expression
1 df-pr 4316 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21xpeq1i 5284 . 2 ({𝐴, 𝐵} × {𝐶}) = (({𝐴} ∪ {𝐵}) × {𝐶})
3 xpsng 6561 . . . . 5 ((𝐴𝑉𝐶𝑈) → ({𝐴} × {𝐶}) = {⟨𝐴, 𝐶⟩})
433adant2 1125 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐴} × {𝐶}) = {⟨𝐴, 𝐶⟩})
5 xpsng 6561 . . . . 5 ((𝐵𝑊𝐶𝑈) → ({𝐵} × {𝐶}) = {⟨𝐵, 𝐶⟩})
653adant1 1124 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐵} × {𝐶}) = {⟨𝐵, 𝐶⟩})
74, 6uneq12d 3903 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑈) → (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐶⟩}))
8 xpundir 5321 . . 3 (({𝐴} ∪ {𝐵}) × {𝐶}) = (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶}))
9 df-pr 4316 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐶⟩})
107, 8, 93eqtr4g 2811 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑈) → (({𝐴} ∪ {𝐵}) × {𝐶}) = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩})
112, 10syl5eq 2798 1 ((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐴, 𝐵} × {𝐶}) = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1624  wcel 2131  cun 3705  {csn 4313  {cpr 4315  cop 4319   × cxp 5256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pr 5047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048
This theorem is referenced by:  zlmodzxz0  42636
  Copyright terms: Public domain W3C validator