![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpomen | Structured version Visualization version GIF version |
Description: The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
xpomen | ⊢ (ω × ω) ≈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 8718 | . 2 ⊢ ω ∈ On | |
2 | ssid 3765 | . 2 ⊢ ω ⊆ ω | |
3 | infxpen 9047 | . 2 ⊢ ((ω ∈ On ∧ ω ⊆ ω) → (ω × ω) ≈ ω) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (ω × ω) ≈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ⊆ wss 3715 class class class wbr 4804 × cxp 5264 Oncon0 5884 ωcom 7231 ≈ cen 8120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-oi 8582 df-card 8975 |
This theorem is referenced by: xpct 9049 infxpenc2 9055 iunfictbso 9147 unctb 9239 fnct 9571 iunctb 9608 xpnnen 15158 rexpen 15176 2ndcctbss 21480 tx1stc 21675 tx2ndc 21676 met2ndci 22548 dyadmbl 23588 |
Copyright terms: Public domain | W3C validator |