MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpnz Structured version   Visualization version   GIF version

Theorem xpnz 5588
Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.)
Assertion
Ref Expression
xpnz ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)

Proof of Theorem xpnz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3964 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 n0 3964 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
31, 2anbi12i 733 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
4 eeanv 2218 . . . 4 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
53, 4bitr4i 267 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
6 opex 4962 . . . . . 6 𝑥, 𝑦⟩ ∈ V
7 eleq1 2718 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
8 opelxp 5180 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
97, 8syl6bb 276 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
106, 9spcev 3331 . . . . 5 ((𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
11 n0 3964 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
1210, 11sylibr 224 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ≠ ∅)
1312exlimivv 1900 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ≠ ∅)
145, 13sylbi 207 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
15 xpeq1 5157 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
16 0xp 5233 . . . . 5 (∅ × 𝐵) = ∅
1715, 16syl6eq 2701 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
1817necon3i 2855 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
19 xpeq2 5163 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
20 xp0 5587 . . . . 5 (𝐴 × ∅) = ∅
2119, 20syl6eq 2701 . . . 4 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
2221necon3i 2855 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅)
2318, 22jca 553 . 2 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
2414, 23impbii 199 1 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  c0 3948  cop 4216   × cxp 5141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151
This theorem is referenced by:  xpeq0  5589  ssxpb  5603  xp11  5604  unixpid  5708  xpexr2  7149  frxp  7332  xpfir  8223  axcc2lem  9296  axdc4lem  9315  mamufacex  20243  txindis  21485  bj-xpnzex  33071  bj-1upln0  33122  bj-2upln1upl  33137  dibn0  36759
  Copyright terms: Public domain W3C validator