![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpinintabd | Structured version Visualization version GIF version |
Description: Value of the intersection of cross-product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
xpinintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
xpinintabd | ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpinintabd.x | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | 1 | inintabd 38411 | 1 ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∃wex 1852 {cab 2757 {crab 3065 ∩ cin 3722 𝒫 cpw 4298 ∩ cint 4612 × cxp 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rab 3070 df-v 3353 df-in 3730 df-ss 3737 df-pw 4300 df-int 4613 |
This theorem is referenced by: relintab 38415 |
Copyright terms: Public domain | W3C validator |