MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiindi Structured version   Visualization version   GIF version

Theorem xpiindi 5290
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpiindi (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem xpiindi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5160 . . . . . 6 Rel (𝐶 × 𝐵)
21rgenw 2953 . . . . 5 𝑥𝐴 Rel (𝐶 × 𝐵)
3 r19.2z 4093 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
42, 3mpan2 707 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
5 reliin 5273 . . . 4 (∃𝑥𝐴 Rel (𝐶 × 𝐵) → Rel 𝑥𝐴 (𝐶 × 𝐵))
64, 5syl 17 . . 3 (𝐴 ≠ ∅ → Rel 𝑥𝐴 (𝐶 × 𝐵))
7 relxp 5160 . . 3 Rel (𝐶 × 𝑥𝐴 𝐵)
86, 7jctil 559 . 2 (𝐴 ≠ ∅ → (Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)))
9 r19.28zv 4099 . . . . . 6 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐶𝑧𝐵) ↔ (𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
109bicomd 213 . . . . 5 (𝐴 ≠ ∅ → ((𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵) ↔ ∀𝑥𝐴 (𝑦𝐶𝑧𝐵)))
11 vex 3234 . . . . . . 7 𝑧 ∈ V
12 eliin 4557 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1311, 12ax-mp 5 . . . . . 6 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
1413anbi2i 730 . . . . 5 ((𝑦𝐶𝑧 𝑥𝐴 𝐵) ↔ (𝑦𝐶 ∧ ∀𝑥𝐴 𝑧𝐵))
15 opelxp 5180 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ (𝑦𝐶𝑧𝐵))
1615ralbii 3009 . . . . 5 (∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ ∀𝑥𝐴 (𝑦𝐶𝑧𝐵))
1710, 14, 163bitr4g 303 . . . 4 (𝐴 ≠ ∅ → ((𝑦𝐶𝑧 𝑥𝐴 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵)))
18 opelxp 5180 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ (𝑦𝐶𝑧 𝑥𝐴 𝐵))
19 opex 4962 . . . . 5 𝑦, 𝑧⟩ ∈ V
20 eliin 4557 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ V → (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵)))
2119, 20ax-mp 5 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐶 × 𝐵))
2217, 18, 213bitr4g 303 . . 3 (𝐴 ≠ ∅ → (⟨𝑦, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵)))
2322eqrelrdv2 5253 . 2 (((Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)) ∧ 𝐴 ≠ ∅) → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
248, 23mpancom 704 1 (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  c0 3948  cop 4216   ciin 4553   × cxp 5141  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-iin 4555  df-opab 4746  df-xp 5149  df-rel 5150
This theorem is referenced by:  xpriindi  5291
  Copyright terms: Public domain W3C validator