![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xphe | Structured version Visualization version GIF version |
Description: Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
Ref | Expression |
---|---|
xphe | ⊢ (𝐴 × 𝐵) hereditary 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5623 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐵) ⊆ ran (𝐴 × 𝐵) | |
2 | rnxpss 5712 | . . 3 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
3 | 1, 2 | sstri 3741 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵 |
4 | df-he 38538 | . 2 ⊢ ((𝐴 × 𝐵) hereditary 𝐵 ↔ ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵) | |
5 | 3, 4 | mpbir 221 | 1 ⊢ (𝐴 × 𝐵) hereditary 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3703 × cxp 5252 ran crn 5255 “ cima 5257 hereditary whe 38537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-xp 5260 df-rel 5261 df-cnv 5262 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-he 38538 |
This theorem is referenced by: 0heALT 38548 |
Copyright terms: Public domain | W3C validator |