![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq2 5278 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 × cxp 5256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-opab 4857 df-xp 5264 |
This theorem is referenced by: xpindir 5404 xpssres 5584 difxp1 5709 xpima 5726 xpexgALT 7318 curry1 7429 fparlem3 7439 fparlem4 7440 xp1en 8203 xp2cda 9186 xpcdaen 9189 pwcda1 9200 pwcdandom 9673 yonedalem3b 17112 yonedalem3 17113 pws1 18808 pwsmgp 18810 xkoinjcn 21684 imasdsf1olem 22371 df0op2 28912 ho01i 28988 nmop0h 29151 mbfmcst 30622 0rrv 30814 cvmlift2lem12 31595 zrdivrng 34057 |
Copyright terms: Public domain | W3C validator |