![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq1 5157 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 × cxp 5141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-opab 4746 df-xp 5149 |
This theorem is referenced by: iunxpconst 5209 xpindi 5288 difxp2 5595 resdmres 5663 curry2 7317 mapsnconst 7945 mapsncnv 7946 cda1dif 9036 cdaassen 9042 infcda1 9053 geomulcvg 14651 hofcl 16946 evlsval 19567 matvsca2 20282 ovoliunnul 23321 vitalilem5 23426 lgam1 24835 finxp2o 33366 finxp3o 33367 poimirlem3 33542 poimirlem5 33544 poimirlem10 33549 poimirlem22 33561 poimirlem23 33562 mendvscafval 38077 binomcxplemnn0 38865 xpprsng 42435 |
Copyright terms: Public domain | W3C validator |