Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq12i Structured version   Visualization version   GIF version

Theorem xpeq12i 5286
 Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
xpeq12i.1 𝐴 = 𝐵
xpeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xpeq12i (𝐴 × 𝐶) = (𝐵 × 𝐷)

Proof of Theorem xpeq12i
StepHypRef Expression
1 xpeq12i.1 . 2 𝐴 = 𝐵
2 xpeq12i.2 . 2 𝐶 = 𝐷
3 xpeq12 5283 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3mp2an 710 1 (𝐴 × 𝐶) = (𝐵 × 𝐷)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1624   × cxp 5256 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-opab 4857  df-xp 5264 This theorem is referenced by:  imainrect  5725  cnvssrndm  5810  idssxp  6162  fpar  7441  canthwelem  9656  trclublem  13927  pjpm  20246  txbasval  21603  hausdiag  21642  ussval  22256  ex-xp  27596  hh0oi  29063  fcnvgreu  29773  sitgclg  30705  sitmcl  30714  ismgmOLD  33954  isdrngo1  34060  rtrclex  38418  rtrclexi  38422  trrelsuperrel2dg  38457
 Copyright terms: Public domain W3C validator