![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq12i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12i.1 | ⊢ 𝐴 = 𝐵 |
xpeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
xpeq12i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | xpeq12 5283 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 × cxp 5256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-opab 4857 df-xp 5264 |
This theorem is referenced by: imainrect 5725 cnvssrndm 5810 idssxp 6162 fpar 7441 canthwelem 9656 trclublem 13927 pjpm 20246 txbasval 21603 hausdiag 21642 ussval 22256 ex-xp 27596 hh0oi 29063 fcnvgreu 29773 sitgclg 30705 sitmcl 30714 ismgmOLD 33954 isdrngo1 34060 rtrclex 38418 rtrclexi 38422 trrelsuperrel2dg 38457 |
Copyright terms: Public domain | W3C validator |