![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
xpeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
xpeq12d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | xpeq12 5287 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1628 × cxp 5260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-opab 4861 df-xp 5268 |
This theorem is referenced by: sqxpeqd 5294 opeliunxp 5323 mpt2mptsx 7397 dmmpt2ssx 7399 fmpt2x 7400 ovmptss 7422 fparlem3 7443 fparlem4 7444 erssxp 7930 marypha2lem2 8503 ackbij1lem8 9237 r1om 9254 fictb 9255 axcc2lem 9446 axcc2 9447 axdc4lem 9465 fsum2dlem 14696 fsumcom2 14700 fsumcom2OLD 14701 ackbijnn 14755 fprod2dlem 14905 fprodcom2 14909 fprodcom2OLD 14910 homaval 16878 xpcval 17014 xpchom 17017 xpchom2 17023 1stfval 17028 2ndfval 17031 xpcpropd 17045 evlfval 17054 isga 17920 symgval 17995 gsumcom2 18570 gsumxp 18571 ablfaclem3 18682 psrval 19560 mamufval 20389 mamudm 20392 mvmulfval 20546 mavmuldm 20554 mavmul0g 20557 txbas 21568 ptbasfi 21582 txindis 21635 tmsxps 22538 metustexhalf 22558 aciunf1lem 29767 esum2dlem 30459 cvmliftlem15 31583 mexval 31702 mpstval 31735 mclsval 31763 mclsax 31769 mclsppslem 31783 filnetlem4 32678 poimirlem26 33744 poimirlem28 33746 heiborlem3 33921 elrefrels2 34586 refreleq 34589 elcnvrefrels2 34599 dvhfset 36867 dvhset 36868 dibffval 36927 dibfval 36928 hdmap1fval 37584 opeliun2xp 42617 dmmpt2ssx2 42621 |
Copyright terms: Public domain | W3C validator |