![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5157 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
2 | xpeq2 5163 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
3 | 1, 2 | sylan9eq 2705 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 × cxp 5141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-opab 4746 df-xp 5149 |
This theorem is referenced by: xpeq12i 5171 xpeq12d 5174 xpid11 5379 xp11 5604 infxpenlem 8874 fpwwe2lem5 9494 pwfseqlem4a 9521 pwfseqlem4 9522 pwfseqlem5 9523 pwfseq 9524 pwsval 16193 mamufval 20239 mvmulfval 20396 txtopon 21442 txbasval 21457 txindislem 21484 ismet 22175 isxmet 22176 shsval 28299 prdsbnd2 33724 ismgmOLD 33779 opidon2OLD 33783 ttac 37920 rfovd 38612 fsovrfovd 38620 sblpnf 38826 |
Copyright terms: Public domain | W3C validator |