![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2719 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 741 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 4749 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 5149 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 5149 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2710 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {copab 4745 × cxp 5141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-opab 4746 df-xp 5149 |
This theorem is referenced by: xpeq12 5168 xpeq1i 5169 xpeq1d 5172 opthprc 5201 dmxpid 5377 reseq2 5423 xpnz 5588 xpdisj1 5590 xpcan2 5606 xpima 5611 unixp 5706 unixpid 5708 pmvalg 7910 xpsneng 8086 xpcomeng 8093 xpdom2g 8097 fodomr 8152 unxpdom 8208 xpfi 8272 marypha1lem 8380 cdaval 9030 iundom2g 9400 hashxplem 13258 dmtrclfv 13803 ramcl 15780 efgval 18176 frgpval 18217 frlmval 20140 txuni2 21416 txbas 21418 txopn 21453 txrest 21482 txdis 21483 txdis1cn 21486 tx1stc 21501 tmdgsum 21946 qustgplem 21971 incistruhgr 26019 isgrpo 27479 hhssablo 28248 hhssnvt 28250 hhsssh 28254 txomap 30029 tpr2rico 30086 elsx 30385 br2base 30459 dya2iocnrect 30471 sxbrsigalem5 30478 sibf0 30524 cvmlift2lem13 31423 |
Copyright terms: Public domain | W3C validator |