![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpct | Structured version Visualization version GIF version |
Description: The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
xpct | ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 8136 | . . . . 5 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
2 | 1 | adantl 473 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ∈ V) |
3 | simpl 474 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
4 | xpdom1g 8222 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × 𝐵)) | |
5 | 2, 3, 4 | syl2anc 696 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × 𝐵)) |
6 | omex 8713 | . . . . 5 ⊢ ω ∈ V | |
7 | 6 | xpdom2 8220 | . . . 4 ⊢ (𝐵 ≼ ω → (ω × 𝐵) ≼ (ω × ω)) |
8 | 7 | adantl 473 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω × 𝐵) ≼ (ω × ω)) |
9 | domtr 8174 | . . 3 ⊢ (((𝐴 × 𝐵) ≼ (ω × 𝐵) ∧ (ω × 𝐵) ≼ (ω × ω)) → (𝐴 × 𝐵) ≼ (ω × ω)) | |
10 | 5, 8, 9 | syl2anc 696 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ (ω × ω)) |
11 | xpomen 9028 | . 2 ⊢ (ω × ω) ≈ ω | |
12 | domentr 8180 | . 2 ⊢ (((𝐴 × 𝐵) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝐴 × 𝐵) ≼ ω) | |
13 | 10, 11, 12 | sylancl 697 | 1 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 Vcvv 3340 class class class wbr 4804 × cxp 5264 ωcom 7230 ≈ cen 8118 ≼ cdom 8119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-oi 8580 df-card 8955 |
This theorem is referenced by: mpt2cti 29802 mpct 39892 opnvonmbllem2 41353 smflimlem6 41490 smfpimbor1lem1 41511 |
Copyright terms: Public domain | W3C validator |