MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomeng Structured version   Visualization version   GIF version

Theorem xpcomeng 8217
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
Assertion
Ref Expression
xpcomeng ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))

Proof of Theorem xpcomeng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5280 . . 3 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
2 xpeq2 5286 . . 3 (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴))
31, 2breq12d 4817 . 2 (𝑥 = 𝐴 → ((𝑥 × 𝑦) ≈ (𝑦 × 𝑥) ↔ (𝐴 × 𝑦) ≈ (𝑦 × 𝐴)))
4 xpeq2 5286 . . 3 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
5 xpeq1 5280 . . 3 (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴))
64, 5breq12d 4817 . 2 (𝑦 = 𝐵 → ((𝐴 × 𝑦) ≈ (𝑦 × 𝐴) ↔ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)))
7 vex 3343 . . 3 𝑥 ∈ V
8 vex 3343 . . 3 𝑦 ∈ V
97, 8xpcomen 8216 . 2 (𝑥 × 𝑦) ≈ (𝑦 × 𝑥)
103, 6, 9vtocl2g 3410 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804   × cxp 5264  cen 8118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-1st 7333  df-2nd 7334  df-en 8122
This theorem is referenced by:  xpsnen2g  8218  xpdom1g  8222  omxpen  8227  xpfir  8347  infxp  9229  infmap2  9232  enrelmap  38793  enrelmapr  38794
  Copyright terms: Public domain W3C validator