![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcoidgend | Structured version Visualization version GIF version |
Description: If two classes are not disjoint, then the composition of their cross-product with itself is idempotent. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
xpcoidgend.1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) |
Ref | Expression |
---|---|
xpcoidgend | ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3949 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | xpcoidgend.1 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) | |
3 | 1, 2 | syl5eqner 3008 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
4 | 3 | xpcogend 13935 | 1 ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ≠ wne 2933 ∩ cin 3715 ∅c0 4059 × cxp 5265 ∘ ccom 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-xp 5273 df-co 5276 |
This theorem is referenced by: xptrrel 13941 relexpxpnnidm 38516 |
Copyright terms: Public domain | W3C validator |