![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcoid | Structured version Visualization version GIF version |
Description: Composition of two square Cartesian products. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
xpcoid | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | co01 5811 | . . 3 ⊢ (∅ ∘ ∅) = ∅ | |
2 | id 22 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
3 | 2 | sqxpeqd 5298 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × ∅)) |
4 | 0xp 5356 | . . . . 5 ⊢ (∅ × ∅) = ∅ | |
5 | 3, 4 | syl6eq 2810 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
6 | 5, 5 | coeq12d 5442 | . . 3 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (∅ ∘ ∅)) |
7 | 1, 6, 5 | 3eqtr4a 2820 | . 2 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
8 | xpco 5836 | . 2 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) | |
9 | 7, 8 | pm2.61ine 3015 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∅c0 4058 × cxp 5264 ∘ ccom 5270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 |
This theorem is referenced by: utop2nei 22255 |
Copyright terms: Public domain | W3C validator |