MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpco Structured version   Visualization version   GIF version

Theorem xpco 5713
Description: Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.)
Assertion
Ref Expression
xpco (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))

Proof of Theorem xpco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3964 . . . . . 6 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
21biimpi 206 . . . . 5 (𝐵 ≠ ∅ → ∃𝑦 𝑦𝐵)
32biantrurd 528 . . . 4 (𝐵 ≠ ∅ → ((𝑥𝐴𝑧𝐶) ↔ (∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶))))
4 ancom 465 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
54anbi1i 731 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐵𝑧𝐶)) ↔ ((𝑦𝐵𝑥𝐴) ∧ (𝑦𝐵𝑧𝐶)))
6 brxp 5181 . . . . . . . 8 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
7 brxp 5181 . . . . . . . 8 (𝑦(𝐵 × 𝐶)𝑧 ↔ (𝑦𝐵𝑧𝐶))
86, 7anbi12i 733 . . . . . . 7 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐵𝑧𝐶)))
9 anandi 888 . . . . . . 7 ((𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ ((𝑦𝐵𝑥𝐴) ∧ (𝑦𝐵𝑧𝐶)))
105, 8, 93bitr4i 292 . . . . . 6 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
1110exbii 1814 . . . . 5 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
12 19.41v 1917 . . . . 5 (∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ (∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
1311, 12bitr2i 265 . . . 4 ((∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧))
143, 13syl6rbb 277 . . 3 (𝐵 ≠ ∅ → (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ (𝑥𝐴𝑧𝐶)))
1514opabbidv 4749 . 2 (𝐵 ≠ ∅ → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧)} = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐶)})
16 df-co 5152 . 2 ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧)}
17 df-xp 5149 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐶)}
1815, 16, 173eqtr4g 2710 1 (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  c0 3948   class class class wbr 4685  {copab 4745   × cxp 5141  ccom 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-co 5152
This theorem is referenced by:  xpcoid  5714  ustund  22072  ustneism  22074
  Copyright terms: Public domain W3C validator